Global Well-Posedness for Cubic NLS with Nonlinear Damping

被引:19
作者
Antonelli, Paolo [1 ]
Sparber, Christof [1 ]
机构
[1] Univ Cambridge, CMS, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
关键词
Dissipation; Energy space; Nonlinear damping; Nonlinear Schrodinger equation; Three-body recombination; GINZBURG-LANDAU EQUATION; SCHRODINGER-EQUATIONS; QUADRATIC POTENTIALS; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEM; PERTURBATION; SCATTERING; EXISTENCE;
D O I
10.1080/03605300903540943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the cubic nonlinear Schrodinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions.
引用
收藏
页码:2310 / 2328
页数:19
相关论文
共 38 条
[1]   Mean-field description of collapsing and exploding Bose-Einstein condensates [J].
Adhikari, SK .
PHYSICAL REVIEW A, 2002, 66 (01) :8
[2]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[3]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[4]   Three-dimensional simulation of jet formation in collapsing condensates [J].
Bao, W ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (02) :329-344
[5]   An explicit unconditionally stable numerical method for solving damped nonlinear Schrodinger equations with a focusing nonlinearity [J].
Bao, WZ ;
Jaksch, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1406-1426
[6]   Inviscid limits of the complex Ginzburg-Landau equation [J].
Bechouche, P ;
Jüngel, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :201-226
[7]   Optical soliton perturbation with nonlinear damping and saturable amplifiers [J].
Biswas, A .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (06) :521-537
[8]   Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential [J].
Carles, R .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (04) :483-508
[9]   Global existence results for nonlinear Schrodinger equations with quadratic potentials [J].
Carles, R .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) :385-398
[10]   Nonlinear Schrodinger equations with repulsive harmonic potential and applications [J].
Carles, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :823-843