Wind turbine wakes over hills

被引:48
|
作者
ShaMsoddin, Sina [1 ]
Porte-Agel, Fernando [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Wind Engn & Renewable Energy Lab WIRE, EPFL ENAC IIE WIRE, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
turbulent boundary layers; turbulent flows; wakes; LARGE-EDDY SIMULATION; BOUNDARY-LAYER FLOW; FINITE-DIFFERENCE MODEL; SUBGRID-SCALE MODELS; TURBULENT-FLOW; COMPLEX TERRAIN; CURVED HILL; AIR-FLOW; PERFORMANCE; CURVATURE;
D O I
10.1017/jfm.2018.653
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Understanding and predicting the behaviour of wind turbine wake flows over hills is important for optimal design of wind-farm configurations on topography. In this study, we present an analytical modelling framework together with large-eddy simulation (LES) results to investigate turbine wakes over two-dimensional hills. The analytical model consists of two steps. In the first step, we deal with the effect of the pressure gradient on the wake evolution; and in the second step, we consider the effect of the hill-induced streamline distortion on the wake. This model enables us to obtain the wake recovery rate, the mean velocity and velocity deficit profiles and the wake trajectory in the presence of the hill. Moreover, we perform LES to test our model and also to obtain new complementary insight about such flows. Especially, we take advantage of the LES data to perform a special analysis of the behaviour of the wake on the leeward side of the hill. It is found that the mainly favourable pressure gradient on the windward side of the hill accelerates the wake recovery and the adverse pressure gradient on the leeward side decelerates it. The wake trajectory for a hill of the same height as the turbine's hub height is found to closely follow the hill profile on the windward side, but it maintains an almost constant elevation (a horizontal line) downstream of the hilltop. The trajectory of the wake on the leeward side is also studied for a limiting case of an escarpment, and it is shown that an internal boundary layer forms on the plateau which leads to an upward displacement of the wake centre. Finally, a parametric study of the position of the turbine with respect to the hill is performed to further elucidate the effect of the hill-induced pressure gradient on the wind turbine wake recovery.
引用
收藏
页码:671 / 702
页数:32
相关论文
共 50 条
  • [41] Estimation of wind turbine wakes with generative-adversarial networks
    Bove, M.
    Lopez, B.
    Toutouh, J.
    Nesmachnow, S.
    Draper, M.
    WAKE CONFERENCE 2023, 2023, 2505
  • [42] Validation of a CFD model of wind turbine wakes with terrain effects
    Makridis, Alexandros
    Chick, John
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2013, 123 : 12 - 29
  • [43] Interaction of Wind Turbine Wakes under Various Atmospheric Conditions
    Lee, Sang
    Vorobieff, Peter
    Poroseva, Svetlana
    ENERGIES, 2018, 11 (06)
  • [44] POD analysis of the structure of vertical axis wind turbine wakes
    Hellstrom, L. H. O.
    Hohman, T. C.
    Smits, A. J.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 237
  • [45] Streamwise development of the wind turbine boundary layer over a model wind turbine array
    Newman, Jensen
    Lebron, Jose
    Meneveau, Charles
    Castillo, Luciano
    PHYSICS OF FLUIDS, 2013, 25 (08)
  • [46] Influence of the Coriolis force on the structure and evolution of wind turbine wakes
    Abkar, Mahdi
    Porte-Agel, Fernando
    PHYSICAL REVIEW FLUIDS, 2016, 1 (06):
  • [47] Theoretical Modeling of Vertical-Axis Wind Turbine Wakes
    Abkar, Mahdi
    ENERGIES, 2019, 12 (01)
  • [48] An Analytical Model for Wind Turbine Wakes under Pressure Gradient
    Dar, Arslan Salim
    Porte-Agel, Fernando
    ENERGIES, 2022, 15 (15)
  • [49] High-Order Numerical Simulations of Wind Turbine Wakes
    Kleusberg, E.
    Mikkelsen, R. F.
    Schlatter, P.
    Ivanell, S.
    Henningson, D. S.
    WAKE CONFERENCE 2017, 2017, 854
  • [50] Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations
    Wu, Yu-Ting
    Porte-Agel, Fernando
    BOUNDARY-LAYER METEOROLOGY, 2011, 138 (03) : 345 - 366