A simple relation for the concentration dependence of osmotic pressure and depletion thickness in polymer solutions

被引:27
作者
Fleer, Gerard J. [1 ]
Skvortsov, Alexander M.
Tuinier, Remco
机构
[1] Univ Wageningen & Res Ctr, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
[2] Chem Pharmaceut Acad, St Petersburg 197022, Russia
[3] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany
关键词
depletion thickness; osmotic pressure; polymer solutions; solution properties; thermodynamics; MEAN-FIELD; CHAINS; POLYSTYRENE; POTENTIALS; SIMULATION; MIXTURES; EQUATION; SOLVENT; DILUTE; PHASE;
D O I
10.1002/mats.200700022
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We propose simple expressions II/II(o) = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, II(o) and delta 0 correspond to the dilute limit, and omega(ex) is an extrapolation concentration which is of the order of the overlap concentration omega(ov). The De Gennes exponent a describes the concentration dependence of the semidilute correlation length xi similar to omega(-alpha) it is related to the Flory exponent nu through alpha = nu/(3 nu - 1.). The quantity omega(ex) is experimentally accessible by extrapolating the semidilute limit towards II = II(o) or delta = delta(o). These expressions are exact in mean field, where the ratio omega(ex)/omega(ov) (0.49 for II, 0.41 for delta) follows from established models. For excluded-volume chains they describe simulation data excellently: in this case omega(ex)/omega(ov) is 0.69 for II and again 0.41 for delta. We find also very good agreement with experimental data.
引用
收藏
页码:531 / 540
页数:10
相关论文
共 32 条
[1]   Phase behaviour of mixtures of colloidal spheres and excluded-volume polymer chains [J].
Aarts, DGAL ;
Tuinier, R ;
Lekkerkerker, HNW .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (33) :7551-7561
[2]  
BAUMGARTNER A, 1984, APPLICATIONS MONTE C, pCH4
[3]   How to derive and parameterize effective potentials in colloid-polymer mixtures [J].
Bolhuis, PG ;
Louis, AA .
MACROMOLECULES, 2002, 35 (05) :1860-1869
[4]   Accurate effective pair potentials for polymer solutions [J].
Bolhuis, PG ;
Louis, AA ;
Hansen, JP ;
Meijer, EJ .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (09) :4296-4311
[5]   EQUILIBRIUM DISTRIBUTION OF FLEXIBLE POLYMER CHAINS BETWEEN A MACROSCOPIC SOLUTION PHASE AND SMALL VOIDS [J].
CASASSA, EF .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER LETTERS, 1967, 5 (9PB) :773-&
[6]   Weak-to-strong penetration transition of macromolecules into a slit in theta solvent [J].
Cifra, P ;
Bleha, T ;
Wang, Y ;
Teraoka, I .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :8313-8318
[7]  
De Gennes P., 1979, SCALING CONCEPTS POL, DOI 10.1163/_q3_SIM_00374
[8]  
DESCLOISEAUX J, 1990, POLYM SOLUTION
[10]  
EISENRIEGLER E, 1993, POLYM NEARS SURFACES