Scaling limit and cube-root fluctuations in SOS surfaces above a wall

被引:20
作者
Caputo, P. [1 ]
Lubetzky, E. [2 ]
Martinelli, F. [1 ]
Sly, A. [3 ]
Toninelli, F. L. [4 ,5 ]
机构
[1] Univ Rome Tre, Dipartmento Matemat, Largo S Murialdo 1, I-00146 Rome, Italy
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[4] Univ Lyon 1, CNRS, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
[5] Univ Lyon 1, Inst Camille Jordan, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France
基金
欧洲研究理事会;
关键词
SOS model; scaling limits; loop ensembles; random surface models; RANDOM CLUSTER-MODELS; KOSTERLITZ-THOULESS TRANSITION; ENTROPIC REPULSION; PHASE-SEPARATION; STATISTICAL-MECHANICS; LOCAL DEVIATION; COULOMB GAS; ISING-MODEL; EQUILIBRIUM; CRYSTAL;
D O I
10.4171/JEMS/606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the classical (2 + 1)-dimensional Solid-On-Solid model above a hard wall on an L x L box of Z(2). The model describes a crystal surface by assigning a nonnegative integer height eta(x) to each site x in the box and 0 heights to its boundary. The probability of a surface configuration eta is proportional to exp (-beta H(eta)), where beta is the inverse-temperature and H(eta) sums the absolute values of height differences between neighboring sites. We give a full description of the shape of the SOS surface for low enough temperatures. First we show that with high probability (w.h.p.) the height of almost all sites is concentrated on two levels, H(L) = left perpendicular(1/4 beta) log Lright perpendicular and H(L) - 1. Moreover, for most values of L the height is concentrated on the single value H(L). Next, we study the ensemble of level lines corresponding to the heights (H(L), H(L)-1,...). We prove that w.h.p. there is a unique macroscopic level line for each height. Furthermore, when taking a diverging sequence of system sizes L-k, the rescaled macroscopic level line at height H(L-k) - n has a limiting shape if the fractional parts of (1/4 beta) log L-k converge to a noncritical value. The scaling limit is an explicit convex subset of the unit square Q and its boundary has a flat component on the boundary of Q. Finally, the highest macroscopic level line has L-k(1/3 +o(1)) fluctuations along the flat part of the boundary of its limiting shape.
引用
收藏
页码:931 / 995
页数:65
相关论文
共 41 条
  • [1] ABRAHAM DB, 1986, PHASE TRANSITIONS CR, V10, P1
  • [2] RELATIONSHIP BETWEEN THE ANISOTROPIC INTERFACE TENSION, THE SCALED INTERFACE WIDTH AND THE EQUILIBRIUM SHAPE IN 2 DIMENSIONS
    AKUTSU, Y
    AKUTSU, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (14): : 2813 - 2820
  • [3] Layering and Wetting Transitions for an SOS Interface
    Alexander, Kenneth S.
    Dunlop, Francois
    Miracle-Sole, Salvador
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (03) : 524 - 576
  • [4] Cube-root boundary fluctuations for droplets in random cluster models
    Alexander, KS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (03) : 733 - 781
  • [5] [Anonymous], 1989, Exactly Solved Models in Statistical Mechanics
  • [6] [Anonymous], INT SERIES NATURAL P
  • [7] Rigorous probabilistic analysis of equilibrium crystal shapes
    Bodineau, T
    Ioffe, D
    Velenik, Y
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) : 1033 - 1098
  • [8] ENTROPIC REPULSION OF THE LATTICE FREE-FIELD
    BOLTHAUSEN, E
    DEUSCHEL, JD
    ZEITOUNI, O
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (02) : 417 - 443
  • [9] Bolthausen E, 2001, ANN PROBAB, V29, P1670
  • [10] Bolthausen E., 1999, INFIN DIMENS ANAL QU, P55