Identification of misdiagnosis by deep neural networks on a histopathologic review of breast cancer lymph node metastases

被引:10
作者
Chen, Cancan [1 ]
Zheng, Shan [2 ,3 ]
Guo, Lei [2 ]
Yang, Xuebing [4 ]
Song, Yan [2 ]
Li, Zhuo [2 ]
Zhu, Yanwu
Liu, Xiaoqi
Li, Qingzhuang [1 ]
Zhang, Huijuan [2 ]
Feng, Ning [1 ]
Zhao, Zuxuan [2 ]
Qiu, Tinglin [5 ]
Du, Jun [6 ]
Guo, Qiang [7 ]
Zhang, Wensheng
Shi, Wenzhao [1 ]
Ma, Jianhui [8 ]
Sun, Fenglong [1 ]
机构
[1] Digital Hlth China Technol Corp Ltd, Beijing 100080, Peoples R China
[2] Chinses Acad Med Sci & Peking Union Med Coll, Canc Hosp, Dept Pathol, Natl Canc Ctr,Natl Clin Res Ctr Canc, Beijing 100021, Peoples R China
[3] Chinese Acad Med Sci, Dept Pathol, Natl Canc Ctr, Natl Clin Res Ctr Canc,Hebei Canc Hosp, Langfang 065001, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Res Ctr Precis Sensing & Control, Beijing 100190, Peoples R China
[5] Chinese Acad Med Sci & Peking Union Med Coll, Dept Med Affairs, Natl Canc Ctr, Natl Clin Res Ctr Canc,Canc Hosp, Beijing 100021, Peoples R China
[6] Chinese Acad Med Sci & Peking Union Med Coll, Dept Acad Res, Natl Canc Ctr, Natl Clin Res Ctr Canc,Canc Hosp, Beijing 100021, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Dept Big Data, Natl Canc Ctr, Natl Clin Res Ctr Canc,Canc Hosp, Beijing 100021, Peoples R China
[8] Chinese Acad Med Sci & Peking Union Med Coll, Dept Urol, Natl Canc Ctr, Natl Clin Res Ctr Canc,Canc Hosp, Beijing 100021, Peoples R China
关键词
FROZEN-SECTION ANALYSIS;
D O I
10.1038/s41598-022-17606-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The frozen section (FS) diagnoses of pathology experts are used in China to determine whether sentinel lymph nodes of breast cancer have metastasis during operation. Direct implementation of a deep neural network (DNN) in clinical practice may be hindered by misdiagnosis of the algorithm, which affects a patient's treatment decision. In this study, we first obtained the prediction result of the commonly used patch-DNN, then we present a relative risk classification and regression tree (RRC ART) to identify the misdiagnosed whole-slide images (WSIs) and recommend them to be reviewed by pathologists. Applying this framework to 2362 WSIs of breast cancer lymph node metastasis, test on frozen section results in the mean area under the curve (AUC) reached 0.9851. However, the mean misdiagnosis rate (0.0248), was significantly higher than the pathologists' misdiagnosis rate (p < 0.01). The RRCART distinguished more than 80% of the WSIs as a high-accuracy group with an average accuracy reached to 0.995, but the difference with the pathologists' performance was not significant (p > 0.01). However, the other low-accuracy group included most of the misdiagnoses of DNN models. Our research shows that the misdiagnosis from deep learning model can be further enriched by our method, and that the low-accuracy WSIs must be selected for pathologists to review and the high-accuracy ones may be ready for pathologists to give diagnostic reports.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
Abadi M, 2016, Arxiv, DOI arXiv:1605.08695
[2]   Comparison of frozen section and touch imprint cytology for evaluation of sentinel lymph node metastasis in breast cancer [J].
Aihara, T ;
Munakata, S ;
Morino, H ;
Takatsuka, Y .
ANNALS OF SURGICAL ONCOLOGY, 2004, 11 (08) :747-750
[3]  
American Joint Committee on Cancer (AJCC),, 2017, AJCC CANC STAGING MA, V8th
[4]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[5]  
Breiman L., 2017, Classification and Regression Trees
[6]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[7]   Utility of intraoperative frozen section analysis of sentinel lymph nodes in breast cancer [J].
Chao, C ;
Wong, SL ;
Ackermann, D ;
Simpson, D ;
Carter, MB ;
Brown, CM ;
Edwards, MJ ;
McMasters, KM .
AMERICAN JOURNAL OF SURGERY, 2001, 182 (06) :609-615
[8]   An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning [J].
Chen, Chi-Long ;
Chen, Chi-Chung ;
Yu, Wei-Hsiang ;
Chen, Szu-Hua ;
Chang, Yu-Chan ;
Hsu, Tai-I ;
Hsiao, Michael ;
Yeh, Chao-Yuan ;
Chen, Cheng-Yu .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Robust whole slide image analysis for cervical cancer screening using deep learning [J].
Cheng, Shenghua ;
Liu, Sibo ;
Yu, Jingya ;
Rao, Gong ;
Xiao, Yuwei ;
Han, Wei ;
Zhu, Wenjie ;
Lv, Xiaohua ;
Li, Ning ;
Cai, Jing ;
Wang, Zehua ;
Feng, Xi ;
Yang, Fei ;
Geng, Xiebo ;
Ma, Jiabo ;
Li, Xu ;
Wei, Ziquan ;
Zhang, Xueying ;
Quan, Tingwei ;
Zeng, Shaoqun ;
Chen, Li ;
Hu, Junbo ;
Liu, Xiuli .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807