The MASCOT Radiometer MARA for the Hayabusa 2 Mission

被引:59
作者
Grott, M. [1 ]
Knollenberg, J. [1 ]
Borgs, B. [1 ]
Haenschke, F. [2 ]
Kessler, E. [2 ]
Helbert, J. [1 ]
Maturilli, A. [1 ]
Mueller, N. [1 ]
机构
[1] German Aerosp Ctr, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany
[2] Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
关键词
Hayabusa; 2; MASCOT; Radiometer; Temperature measurement; Thermal inertia; 162173; 1999; JU3; THERMAL INERTIA; YARKOVSKY; TARGETS;
D O I
10.1007/s11214-016-0272-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The MASCOT radiometer MARA is a multi-spectral instrument which measures net radiative flux in six wavelength bands. MARA uses thermopile sensors as sensing elements, and the net flux between the instrument and the surface in the 18 degrees field of view is determined by evaluating the thermoelectric potential between the sensors' absorbing surface and the thermopile's cold-junction. MARA houses 4 bandpass channels in the spectral range of 5.5-7, 8-9.5, 9.5-11.5, and 13.5-15.5 mu m, as well as one long-pass channel, which is sensitive in the > 3 mu m range. In addition, one channel is similar to that used by the Hayabusa 2 orbiter thermal mapper, which uses a wavelength range of 8-12 mu m. The primary science objective of the MARA instrument it the determination of the target asteroid's surface brightness temperature, from which surface thermal inertia can be derived. In addition, the spectral bandpass channels will be used to estimate the spectral slope of the surface in the thermal infrared wavelength range. The instrument has been calibrated using a cavity blackbody, and the temperature uncertainty is 1 K in the long pass channel for target temperatures of > 173 K. Measurement uncertainty in the spectral bandpasses is 1 K for target temperatures above 273 K.
引用
收藏
页码:413 / 431
页数:19
相关论文
共 43 条
[1]  
Abe M., 2008, 39 ANN LUNAR PLANETA, P1594
[2]   Mercury radiometer and thermal infrared spectrometer-a novel thermal imaging spectrometer for the exploration of Mercury [J].
Arnold, Gabriele E. ;
Helbert, Joern ;
Hiesinger, Harald ;
Hirsch, Helmut ;
Jessberger, Elmar K. ;
Peter, Gisbert ;
Walter, Ingo .
JOURNAL OF APPLIED REMOTE SENSING, 2008, 2
[3]   Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter [J].
Barnouin-Jha, Olivier S. ;
Cheng, Andrew F. ;
Mukai, Tadashi ;
Abe, Shinsuke ;
Hirata, Naru ;
Nakamura, Ryosuke ;
Gaskell, Robert W. ;
Saito, Jun ;
Clark, Beth E. .
ICARUS, 2008, 198 (01) :108-124
[4]  
Bibring J.P., 2015, SPACE SCI REV
[5]  
Biele J., 2008, SPACE SCI SERIES ISS, V28, P275
[6]   Spectral properties of near-earth objects: Palomar and IRTF results for 48 objects including spacecraft targets (9969) Braille and (10302) 1989 ML [J].
Binzel, RP ;
Harris, AW ;
Bus, SJ ;
Burbine, TH .
ICARUS, 2001, 151 (02) :139-149
[7]   The Yarkovsky and YORP effects: Implications for asteroid dynamics [J].
Bottke, William F., Jr. ;
Vokrouhlicky, David ;
Rubincam, David P. ;
Nesvorny, David .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2006, 34 :157-191
[8]   Phase II of the Small Main-belt Asteroid Spectroscopic Survey - A feature-based taxonomy [J].
Bus, SJ ;
Binzel, RP .
ICARUS, 2002, 158 (01) :146-177
[9]   Spitzer observations of spacecraft target 162173 (1999 JU3) [J].
Campins, H. ;
Emery, J. P. ;
Kelley, M. ;
Fernandez, Y. ;
Licandro, J. ;
Delbo, M. ;
Barucci, A. ;
Dotto, E. .
ASTRONOMY & ASTROPHYSICS, 2009, 503 (02) :L17-L20
[10]   Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka [J].
Chesley, SR ;
Ostro, SJ ;
Vokrouhlicky, D ;
Capek, D ;
Giorgini, JD ;
Nolan, MC ;
Margot, JL ;
Hine, AA ;
Benner, LAM ;
Chamberlin, AB .
SCIENCE, 2003, 302 (5651) :1739-1742