Nonrelativistic limit of the Dirac-Fock equations

被引:28
作者
Esteban, MJ [1 ]
Séré, E [1 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris 16, France
来源
ANNALES HENRI POINCARE | 2001年 / 2卷 / 05期
关键词
D O I
10.1007/s00023-001-8600-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Hartree-Fock equations are proved to be the non relativistic limit of the Dirac-Fock equations as far as convergence of "stationary states" is concerned. This property is used to derive a meaningful definition of "ground state" energy and "ground state" solutions for the Dirac-Fock model.
引用
收藏
页码:941 / 961
页数:21
相关论文
共 16 条
[1]   THERE ARE NO UNFILLED SHELLS IN UNRESTRICTED HARTREE-FOCK THEORY [J].
BACH, V ;
LIEB, EH ;
LOSS, M ;
SOLOVEJ, JP .
PHYSICAL REVIEW LETTERS, 1994, 72 (19) :2981-2983
[2]   MINIMAX CHARACTERIZATION OF SOLUTIONS FOR A SEMILINEAR ELLIPTIC EQUATION WITH LACK OF COMPACTNESS [J].
BUFFONI, B ;
JEANJEAN, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (04) :377-404
[3]   On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms [J].
Burenkov, VI ;
Evans, WD .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :993-1005
[4]   Variational characterization for eigenvalues of Dirac operators [J].
Dolbeault, J ;
Esteban, MJ ;
Séré, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (04) :321-347
[5]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[6]   Solutions of the Dirac-Fock equations for atoms and molecules [J].
Esteban, MJ ;
Séré, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (03) :499-530
[7]  
GRIESEMER M, 1999, DOC MATH, V4, P275, DOI [DOI 10.1112/S0024610799007930), DOI 10.4171/DM/61]
[8]   SPECTRAL THEORY OF OPERATOR (P2+M2)1/2 - ZE2-R [J].
HERBST, IW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :285-294
[9]   RELATIVISTIC SELF-CONSISTENT-FIELD THEORY FOR CLOSED-SHELL ATOMS [J].
KIM, YK .
PHYSICAL REVIEW, 1967, 154 (01) :17-&
[10]   HARTREE-FOCK THEORY FOR COULOMB SYSTEMS [J].
LIEB, EH ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 53 (03) :185-194