Transfer Function Estimation in System Identification Toolbox via Vector Fitting

被引:81
|
作者
Ozdemir, Ahmet Arda [1 ]
Gumussoy, Suat [1 ]
机构
[1] MathWorks, 3 Apple Hill Dr, Natick, MA 01760 USA
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Frequency domain identification; parameter constraints; orthonormal vector fitting; Sanathanan-Koerner (SK) iterations; Instrumental Variable (IV) iterations; FREQUENCY-DOMAIN RESPONSES; RATIONAL APPROXIMATION;
D O I
10.1016/j.ifacol.2017.08.1026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers black- and grey-box continuous-time transfer function estimation from frequency response measurements. The first contribution is a bilinear mapping of the original problem from the imaginary axis onto the unit disk. This improves the numerics of the underlying Sanathanan-Koerner iterations and the more recent instrumental-variable iterations. Orthonormal rational basis functions on the unit disk are utilized. Each iteration step necessitates a minimal state-space realization with these basis functions. One such derivation is the second contribution. System identification with these basis functions yield zero-pole-gain models. The third contribution is an efficient method to express transfer function coefficient constraints in terms of the orthonormal rational basis functions. This allows for estimating transfer function models with arbitrary relative degrees (including improper models), along with other fixed and bounded parameter values. The algorithm is implemented in the tfest function in System Identification Toolbox (Release 2016b, for use with MATLAB) for frequency domain data. Two examples are presented to demonstrate the algorithm performance. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6232 / 6237
页数:6
相关论文
共 50 条
  • [31] Identification of transfer function in a feedback system and autoregressive analysis
    Kishida, K
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1381 - 1386
  • [32] Transfer function identification in a fast steering mirror system
    Hu, Hao-Jun
    Ma, Jia-Guang
    Wang, Qiang
    Wu, Qiong-Yan
    Guangdian Gongcheng/Opto-Electronic Engineering, 2005, 32 (07): : 1 - 3
  • [33] EFFICIENT YIELD ESTIMATION OF RF-MEMS USING VECTOR FITTING BASED NEURO-TRANSFER MODELS
    Wen, Bo
    You, Rukang
    Zhou, Yuancheng
    Wang, Qi
    Wang, Wei
    2024 IEEE 37TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2024, : 513 - 516
  • [34] Model Identification and Validation for a Heating System using MATLAB System Identification Toolbox
    Rabbani, Muhammad Junaid
    Hussain, Kashan
    Khan, Asim-ur-Rehman
    Ali, Abdullah
    1ST INTERNATIONAL CONFERENCE ON SENSING FOR INDUSTRY, CONTROL, COMMUNICATIONS, & SECURITY TECHNOLOGIES (ICSICCST 2013), 2013, 51
  • [35] Nonlinear eye gaze mapping function estimation via support vector regression
    Zhu, Zhiwei
    Ji, Qiang
    Bennett, Kristin P.
    18th International Conference on Pattern Recognition, Vol 1, Proceedings, 2006, : 1132 - 1135
  • [36] Improving the total rotation vector estimation via a bistatic ISAR system
    Martorella, M
    Palmer, J
    Berizzi, F
    Dalle Mese, E
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1068 - 1071
  • [37] Online Features in the MATLAB® System Identification Toolbox™
    Ljung, Lennart
    Ozdemir, Ahmet Arda
    Singh, Rajiv
    IFAC PAPERSONLINE, 2018, 51 (15): : 700 - 705
  • [38] UNIT: A freely available system identification toolbox
    Ninness, Brett
    Wills, Adrian
    Mills, Adam
    CONTROL ENGINEERING PRACTICE, 2013, 21 (05) : 631 - 644
  • [39] On the dynamic neural network toolbox design for identification, estimation and control
    Chairez, Isaac
    Alejandro Guarneros-Sandoval, Israel
    Prud, Vlad
    Andrianova, Olga
    Ernest, Sleptsov
    Chertopolokhov, Viktor
    Bugriy, Grigory
    Mukhamedov, Arthur
    KYBERNETES, 2023, 52 (09) : 2943 - 2957
  • [40] Linear system identification as curve fitting
    Ljung, L
    DIRECTIONS IN MATHEMATICAL SYSTEMS THEORY AND OPTIMIZATION, 2003, 286 : 203 - 215