Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms

被引:0
作者
Batista, Lucas S. [1 ]
Campelo, Felipe [1 ]
Guimaraes, Frederico G. [1 ]
Ramirez, Jaime A. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Engn Eletr, BR-31720010 Belo Horizonte, MG, Brazil
来源
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION | 2011年 / 6576卷
关键词
Evolutionary multiobjective optimization; evolutionary algorithms; epsilon-dominance; Pareto front; QUICK COMPUTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relaxed forms of Pareto dominance have been shown to be the most effective way in which evolutionary algorithms can progress towards the Pareto-optimal front with a widely spread distribution of solutions. A popular concept is the epsilon-dominance technique, which has been employed as an archive update strategy in some multiobjective evolutionary algorithms. In spite of the great usefulness of the epsilon-dominance concept, there are still difficulties in computing an appropriate value of epsilon that provides the desirable number of nondominated points. Additionally, several viable solutions may be lost depending on the hypergrid adopted, impacting the convergence and the diversity of the estimate set. We propose the concept of cone epsilon-dominance, which is a variant of the epsilon-dominance, to overcome these limitations. Cone epsilon-dominance maintains the good convergence properties of epsilon-dominance, provides a better control over the resolution of the estimated Pareto front, and also performs a better spread of solutions along the front. Experimental validation of the proposed cone epsilon-dominance shows a significant improvement in the diversity of solutions over both the regular Pareto-dominance and the epsilon-dominance.
引用
收藏
页码:76 / 90
页数:15
相关论文
共 50 条
  • [21] Considerations in engineering parallel multiobjective evolutionary algorithms
    Van Veldhuizen, DA
    Zydallis, JB
    Lamont, GB
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) : 144 - 173
  • [22] Multiobjective evolutionary algorithms: A survey of the state of the art
    Zhou, Aimin
    Qu, Bo-Yang
    Li, Hui
    Zhao, Shi-Zheng
    Suganthan, Ponnuthurai Nagaratnam
    Zhang, Qingfu
    SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) : 32 - 49
  • [23] Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering
    Arias-Montano, Alfredo
    Coello Coello, Carlos A.
    Mezura-Montes, Efren
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2012, 16 (05) : 662 - 694
  • [24] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    Journal of Heuristics, 2000, 6 : 347 - 360
  • [25] Multiphase Balance of Diversity and Convergence in Multiobjective Optimization
    Seada, Haitham
    Abouhawwash, Mohamed
    Deb, Kalyanmoy
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (03) : 503 - 513
  • [26] A Survey of Normalization Methods in Multiobjective Evolutionary Algorithms
    He, Linjun
    Ishibuchi, Hisao
    Trivedi, Anupam
    Wang, Handing
    Nan, Yang
    Srinivasan, Dipti
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (06) : 1028 - 1048
  • [27] Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
    Zitzler, Eckart
    Deb, Kalyanmoy
    Thiele, Lothar
    EVOLUTIONARY COMPUTATION, 2000, 8 (02) : 173 - 195
  • [28] Global multiobjective optimization using evolutionary algorithms
    Hanne, T
    JOURNAL OF HEURISTICS, 2000, 6 (03) : 347 - 360
  • [29] Multiobjective optimal power flow using Strength Pareto Evolutionary Algorithm
    Abido, MA
    UPEC 2004: 39TH INTERNATIONAL UNIVERSITITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, CONFERENCE PROCEEDINGS, 2005, : 457 - 461
  • [30] Multiobjective optimal VAR dispatch using Strength Pareto Evolutionary Algorithm
    Abido, M. A.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 730 - 736