Testing for the parametric parts in a single-index varying-coefficient model

被引:9
作者
Huang ZhenSheng [1 ,2 ]
Zhang RiQuan [3 ,4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[3] E China Normal Univ, Dept Stat, Shanghai 200241, Peoples R China
[4] Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized likelihood ratio; index parameter; local smoothing method; single-index models; Wilks' type of phenomenon; LIKELIHOOD RATIO TESTS; LINEAR-MODELS; ADDITIVE-MODELS; INFERENCES;
D O I
10.1007/s11425-011-4336-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Single-index varying-coefficient models (SIVCMs) are very useful in multivariate nonparametric regression. However, there has less attention focused on inferences of the SIVCMs. Using the local linear method, we propose estimates of the unknowns in the SIVCMs. In this article, our main purpose is to examine whether the generalized likelihood ratio (GLR) tests are applicable to the testing problem for the index parameter in the SIVCMs. Under the null hypothesis our proposed GLR statistic follows the chi-squared distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters or functions, which is called as Wilks' phenomenon (see Fan et al., 2001). A simulation study is conducted to illustrate the proposed methodology.
引用
收藏
页码:1017 / 1028
页数:12
相关论文
共 50 条
  • [21] Statistical inference on parametric part for partially linear single-index model
    Zhang RiQuan
    Huang ZhenSheng
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10): : 2227 - 2242
  • [22] Estimation and testing for time-varying quantile single-index models with longitudinal data
    Li, Jianbo
    Lian, Heng
    Jiang, Xuejun
    Song, Xinyuan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 118 : 66 - 83
  • [23] A Varying-Coefficient Expectile Model for Estimating Value at Risk
    Xie, Shangyu
    Zhou, Yong
    Wan, Alan T. K.
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2014, 32 (04) : 576 - 592
  • [24] Quantile regression and variable selection of single-index coefficient model
    Zhao, Weihua
    Zhang, Riquan
    Lv, Yazhao
    Liu, Jicai
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (04) : 761 - 789
  • [25] Assessing Influence on Partially Varying-Coefficient Generalized Linear Model
    Ibacache-Pulgar, German
    Lira, Valeria
    Villegas, Cristian
    [J]. REVSTAT-STATISTICAL JOURNAL, 2024, 22 (03) : 321 - 342
  • [26] Quantile varying-coefficient structural equation model
    Cheng, Hao
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (05) : 1439 - 1475
  • [27] Inference on coefficient function for varying-coefficient partially linear model
    Jingyan Feng
    Riquan Zhang
    [J]. Journal of Systems Science and Complexity, 2012, 25 : 1143 - 1157
  • [28] INFERENCE ON COEFFICIENT FUNCTION FOR VARYING-COEFFICIENT PARTIALLY LINEAR MODEL
    Jingyan FENG
    Riquan ZHANG
    [J]. Journal of Systems Science & Complexity, 2012, 25 (06) : 1143 - 1157
  • [29] Inference on coefficient function for varying-coefficient partially linear model
    Feng, Jingyan
    Zhang, Riquan
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (06) : 1143 - 1157
  • [30] Composite quantile regression and variable selection in single-index coefficient model
    Zhang, Riquan
    Lv, Yazhao
    Zhao, Weihua
    Liu, Jicai
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 176 : 1 - 21