On the geometric constructions of optimal linear codes

被引:13
作者
Kageyama, Yuuki [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Optimal linear codes; Griesmer; Projective geometry; Geometric puncturing; MINIMUM LENGTH; GRIESMER CODES; NONEXISTENCE; PARAMETERS;
D O I
10.1007/s10623-015-0167-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we generalize the construction of Griesmer codes of Belov type to construct [g(q) (k, d) + t, k, d](q) codes with an integer t > 1, where g(q) (k, d) = Sigma(i=0) (k-1) This leads to the construction of several codes of length g(q)(k, d) + 1, many of which are optimal. We also construct a q-divisible [q(2) + q, 5, q(2) - q](q) code through projective geometry. As a projective dual of the code, we construct optimal codes, giving n(q) (5, d) = g(q) (5, d) + 1 for q(4) - q(3) q(2) <= d <= (q(4) - q(3) - 2q, q >= 3, where nq(k, d) is the minimum length n for which an [n, k, dlq code exists.
引用
收藏
页码:469 / 480
页数:12
相关论文
共 27 条
[11]  
Davydov A.A., 2009, INNOV INCID GEOM, V6-7, P139
[12]  
Dodunekov S, 1985, THESIS
[13]  
Hill R, 1999, CH CRC RES NOTES MAT, V403, P127
[14]  
HILL R, 1992, CRYPTOGRAPHY CODING, V2, P75
[15]  
Hirschfeld J.W.P, 1998, PROJECTIVE GEOMETRIE
[16]   On the construction of Griesmer codes of dimension 5 [J].
Kageyama, Yuuki ;
Maruta, Tatsuya .
DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (02) :277-280
[17]   Parameters for which the Griesmer bound is not sharp [J].
Kleina, Andreas ;
Metsch, Klaus .
DISCRETE MATHEMATICS, 2007, 307 (22) :2695-2703
[18]   Nonexistence of some Griesmer codes over Fq [J].
Kumegawa, Kazuki ;
Maruta, Tatsuya .
DISCRETE MATHEMATICS, 2016, 339 (02) :515-521
[19]  
Lidl R., 1997, ENCY MATH ITS APPL, V20
[20]   On the minimum length of q-ary linear codes of dimension four [J].
Maruta, T .
DISCRETE MATHEMATICS, 1999, 208 :427-435