On the geometric constructions of optimal linear codes

被引:13
作者
Kageyama, Yuuki [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Optimal linear codes; Griesmer; Projective geometry; Geometric puncturing; MINIMUM LENGTH; GRIESMER CODES; NONEXISTENCE; PARAMETERS;
D O I
10.1007/s10623-015-0167-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we generalize the construction of Griesmer codes of Belov type to construct [g(q) (k, d) + t, k, d](q) codes with an integer t > 1, where g(q) (k, d) = Sigma(i=0) (k-1) This leads to the construction of several codes of length g(q)(k, d) + 1, many of which are optimal. We also construct a q-divisible [q(2) + q, 5, q(2) - q](q) code through projective geometry. As a projective dual of the code, we construct optimal codes, giving n(q) (5, d) = g(q) (5, d) + 1 for q(4) - q(3) q(2) <= d <= (q(4) - q(3) - 2q, q >= 3, where nq(k, d) is the minimum length n for which an [n, k, dlq code exists.
引用
收藏
页码:469 / 480
页数:12
相关论文
共 27 条
[1]  
[Anonymous], 1991, General Galois Geometries
[2]  
Ball S., Table of bounds on three dimensional linear codes or (n, r)-arcs in PG(2, q)
[3]  
Belov B. I., 1974, Problems of Information Transmission, V10, P211
[4]   On the minimum length of linear codes over F5 [J].
Bouyukliev, Iliya ;
Kageyama, Yuuki ;
Maruta, Tatsuya .
DISCRETE MATHEMATICS, 2015, 338 (06) :938-953
[5]   The Correspondence between Projective Codes and 2-weight Codes [J].
Brouwer A.E. ;
Van Eupen M. .
Designs, Codes and Cryptography, 1997, 11 (3) :261-266
[6]   Nonexistence of a [gq(5,d),5,d]q code for 3q4-4q3-2q+1 ≤ d ≤ 3q4-4q3-q [J].
Cheon, E. J. ;
Kato, T. ;
Kim, S. J. .
DISCRETE MATHEMATICS, 2008, 308 (14) :3082-3089
[7]  
Cheon EJ, 2007, AUSTRALAS J COMB, V37, P225
[8]   On the minimum length of some linear codes [J].
Cheon, E. J. ;
Maruta, T. .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 43 (2-3) :123-135
[9]   The non-existence of Griesmer codes with parameters close to codes of Belov type [J].
Cheon, E. J. .
DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (02) :131-139
[10]   A class of optimal linear codes of length one above the Griesmer bound [J].
Cheon, E. J. .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 51 (01) :9-20