Convolution equivalence and distributions of random sums

被引:62
作者
Watanabe, Toshiro [1 ]
机构
[1] Univ Aizu, Ctr Math Sci, Aizu Wakamatsu, Fukushima, Japan
关键词
convolution equivalence; subexponentiality; O-subexponentiality; infinite divisibility; random sum; IID;
D O I
10.1007/s00440-007-0109-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A serious gap in the Proof of Pakes's paper on the convolution equivalence of infinitely divisible distributions on the line is completely closed. It completes the real analytic approach to Sgibnev's theorem. Then the convolution equivalence of random sums of IID random variables is discussed. Some of the results are applied to random walks and Levy processes. In particular, results of Bertoin and Doney and of Korshunov on the distribution tail of the supremum of a random walk are improved. Finally, an extension of Rogozin's theorem is proved.
引用
收藏
页码:367 / 397
页数:31
相关论文
共 39 条
[1]   Some asymptotic results for transient random walks [J].
Bertoin, J ;
Doney, RA .
ADVANCES IN APPLIED PROBABILITY, 1996, 28 (01) :207-226
[2]  
Bingham N. H., 1987, Regular Variation
[3]   FUNCTIONS OF PROBABILITY MEASURES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 :255-302
[4]   CORRECTION [J].
CLINE, DBH .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 48 :152-152
[5]   CONVOLUTIONS OF DISTRIBUTIONS WITH EXPONENTIAL AND SUBEXPONENTIAL TAILS [J].
CLINE, DBH .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 :347-365
[6]   Applications of factorization embeddings for Levy processes [J].
Dieker, A. B. .
ADVANCES IN APPLIED PROBABILITY, 2006, 38 (03) :768-791
[7]   Overshoots and undershoots of Levy processes [J].
Doney, RA ;
Kyprianou, AE .
ANNALS OF APPLIED PROBABILITY, 2006, 16 (01) :91-106
[8]   SUBEXPONENTIALITY AND INFINITE DIVISIBILITY [J].
EMBRECHTS, P ;
GOLDIE, CM ;
VERAVERBEKE, N .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03) :335-347
[9]  
EMBRECHTS P, 1982, J AUST MATH SOC A, V32, P412, DOI 10.1017/S1446788700024976
[10]   ESTIMATES FOR THE PROBABILITY OF RUIN WITH SPECIAL EMPHASIS ON THE POSSIBILITY OF LARGE CLAIMS [J].
EMBRECHTS, P ;
VERAVERBEKE, N .
INSURANCE MATHEMATICS & ECONOMICS, 1982, 1 (01) :55-72