Exponentially harmonic maps, exponential stress energy and stability

被引:8
|
作者
Chiang, Yuan-Jen [1 ]
机构
[1] Univ Mary Washington, Dept Math, Fredericksburg, VA 22401 USA
关键词
Exponentially harmonic tension field; exponentially harmonic map; exponential stress energy; VARIATION FORMULA; MAPPINGS;
D O I
10.1142/S0219199715500765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the exponential stress energy associated to an exponentially harmonic map between Riemannian manifolds. We prove three equivalent statements for a horizontally weakly conformal exponentially harmonic map between Riemannian manifolds. We also investigate the stability of exponentially harmonic maps.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On Uniqueness of Heat Flow of Harmonic Maps
    Huang, Tao
    Wang, Changyou
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) : 1525 - 1546
  • [32] Two examples of harmonic maps into spheres
    Misawa, Masashi
    Nakauchi, Nobumitsu
    ADVANCES IN GEOMETRY, 2022, 22 (01) : 23 - 31
  • [33] A harmonic maps approach to fluid flows
    Constantin, Olivia
    Martin, Maria J.
    MATHEMATISCHE ANNALEN, 2017, 369 (1-2) : 1 - 16
  • [34] HARMONIC MAPS DEFINED BY THE GEODESIC FLOW
    Abbassi, M. T. K.
    Calvaruso, G.
    Perrone, D.
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 69 - 90
  • [35] Harmonic Maps Between Alexandrov Spaces
    Huang, Jia-Cheng
    Zhang, Hui-Chun
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (02) : 1355 - 1392
  • [36] The Geometry of ΦS-Harmonic Maps
    Feng, Shuxiang
    Han, Yingbo
    Li, Xiao
    Wei, Shihshu Walter
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 9469 - 9508
  • [37] Asymptotic Boundary Value Problem of Harmonic Maps via Harmonic Boundary
    Lee, Yong Hah
    POTENTIAL ANALYSIS, 2014, 41 (02) : 463 - 468
  • [38] INFINITE ENERGY EQUIVARIANT HARMONIC MAPS, DOMINATION, AND ANTI-DE SITTER 3-MANIFOLDS
    Sagman, Nathaniel
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 124 (03) : 553 - 598
  • [39] A volume decreasing theorem for -harmonic maps and applications
    Zhao, Guangwen
    ARCHIV DER MATHEMATIK, 2018, 110 (06) : 629 - 635
  • [40] HARMONIC MAPS BETWEEN ROTATIONALLY SYMMETRIC MANIFOLDS
    Fotiadis, A.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 685 - 695