Going Deeper in Spiking Neural Networks: VGG and Residual Architectures

被引:780
作者
Sengupta, Abhronil [1 ]
Ye, Yuting [2 ]
Wang, Robert [2 ]
Liu, Chiao [2 ]
Roy, Kaushik [1 ]
机构
[1] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Facebook Res, Facebook Real Labs, Redmond, WA USA
关键词
spiking neural networks; event-driven neural networks; sparsity; neuromorphic computing; visual recognition;
D O I
10.3389/fnins.2019.00095
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Over the past few years, Spiking Neural Networks (SNNs) have become popular as a possible pathway to enable low-power event-driven neuromorphic hardware. However, their application in machine learning have largely been limited to very shallow neural network architectures for simple problems. In this paper, we propose a novel algorithmic technique for generating an SNN with a deep architecture, and demonstrate its effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet. Our technique applies to both VGG and Residual network architectures, with significantly better accuracy than the state-of-the-art. Finally, we present analysis of the sparse event-driven computations to demonstrate reduced hardware overhead when operating in the spiking domain.
引用
收藏
页数:10
相关论文
共 27 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]  
[Anonymous], 2016, ARXIV161105141
[3]   Mapping from Frame-Driven to Frame-Free Event-Driven Vision Systems by Low-Rate Rate Coding and Coincidence Processing-Application to Feedforward ConvNets [J].
Antonio Perez-Carrasco, Jose ;
Zhao, Bo ;
Serrano, Carmen ;
Acha, Begona ;
Serrano-Gotarredona, Teresa ;
Chen, Shouchun ;
Linares-Barranco, Bernabe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2706-2719
[4]   Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition [J].
Cao, Yongqiang ;
Chen, Yang ;
Khosla, Deepak .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 113 (01) :54-66
[5]  
Chen ZP, 1998, 1998 INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN - PROCEEDINGS, P239
[6]   Unsupervised learning of digit recognition using spike-timing-dependent plasticity [J].
Diehl, Peter U. ;
Cook, Matthew .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9
[7]  
Diehl Peter U, 2015, IEEE IJCNN, P1, DOI [10.1109/IJCNN.2015.7280696, DOI 10.1109/IJCNN.2015.7280696]
[8]   Convolutional networks for fast, energy-efficient neuromorphic computing [J].
Esser, Steven K. ;
Merolla, Paul A. ;
Arthur, John V. ;
Cassidy, Andrew S. ;
Appuswamy, Rathinakumar ;
Andreopoulos, Alexander ;
Berg, David J. ;
McKinstry, Jeffrey L. ;
Melano, Timothy ;
Barch, Davis R. ;
di Nolfo, Carmelo ;
Datta, Pallab ;
Amir, Arnon ;
Taba, Brian ;
Flickner, Myron D. ;
Modha, Dharmendra S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) :11441-11446
[9]   Comparison between frame-constrained fix-pixel-value and frame-free spiking-dynamic-pixel convNets for visual processing [J].
Farabet, Clement ;
Paz, Rafael ;
Perez-Carrasco, Jose ;
Zamarreno-Ramos, Carlos ;
Linares-Barranco, Alejandro ;
LeCun, Yann ;
Culurciello, Eugenio ;
Serrano-Gotarredona, Teresa ;
Linares-Barranco, Bernabe .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[10]  
Han S, 2016, ICLR 2016 INT C LEAR