Two detector arrays for fast neutrons at LANSCE

被引:15
作者
Haight, R. C. [1 ]
Lee, H. Y. [1 ]
Taddeucci, T. N. [1 ]
O'Donnell, J. M. [1 ]
Perdue, B. A. [1 ]
Fotiades, N. [1 ]
Devlin, M. [1 ]
Ullmann, J. L. [1 ]
Laptev, A. [1 ]
Bredeweg, T. [1 ]
Jandel, M. [1 ]
Nelson, R. O. [1 ]
Wender, S. A. [1 ]
White, M. C. [1 ]
Wu, C. Y. [2 ]
Kwan, E. [2 ]
Chyzh, A. [2 ]
Henderson, R. [2 ]
Gostic, J. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
来源
JOURNAL OF INSTRUMENTATION | 2012年 / 7卷
关键词
Scintillators; scintillation and light emission processes (solid; gas and liquid scintillators); Neutron detectors (cold; thermal; fast neutrons); FISSION; SPECTRUM;
D O I
10.1088/1748-0221/7/03/C03028
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on Li-6-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The Li-6-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) Li-6-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons from the WNR/LANSCE neutron beam, and efficiency calibration with Cf-252 spontaneous fission neutrons. Design considerations and test results are presented.
引用
收藏
页数:9
相关论文
共 14 条
  • [1] A hybrid pulse shape discrimination technique with enhanced performance at neutron energies below 500 keV
    Ambers, Scott D.
    Flaska, Marek
    Pozzi, Sara A.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 638 (01) : 116 - 121
  • [2] ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology
    Chadwick, M. B.
    Oblozinsky, P.
    Herman, M.
    Greene, N. M.
    McKnight, R. D.
    Smith, D. L.
    Young, P. G.
    MacFarlane, R. E.
    Hale, G. M.
    Frankle, S. C.
    Kahler, A. C.
    Kawano, T.
    Little, R. C.
    Madland, D. G.
    Moller, P.
    Mosteller, R. D.
    Page, P. R.
    Talou, P.
    Trellue, H.
    White, M. C.
    Wilson, W. B.
    Arcilla, R.
    Dunford, C. L.
    Mughabghab, S. F.
    Pritychenko, B.
    Rochman, D.
    Sonzogni, A. A.
    Lubitz, C. R.
    Trumbull, T. H.
    Weinman, J. P.
    Brown, D. A.
    Cullen, D. E.
    Heinrichs, D. P.
    McNabb, D. P.
    Derrien, H.
    Dunn, M. E.
    Larson, N. M.
    Leal, L. C.
    Carlson, A. D.
    Block, R. C.
    Briggs, J. B.
    Cheng, E. T.
    Huria, H. C.
    Zerkle, M. L.
    Kozier, K. S.
    Courcelle, A.
    Pronyaev, V.
    van der Marck, S. C.
    [J]. NUCLEAR DATA SHEETS, 2006, 107 (12) : 2931 - 3059
  • [3] Klein H., POS FNDA2006, P097
  • [4] KNITTER HH, 1975, ATOMKERNENERG/KERNT, V26, P76
  • [5] Prescission neutrons in the fission of 235U and 252Cf nuclei
    Kornilov, NV
    Kagalenko, AB
    Hambsch, FJ
    [J]. PHYSICS OF ATOMIC NUCLEI, 2001, 64 (08) : 1373 - 1385
  • [6] Lee H.Y., 2011, P 10 INT TOP M NUCL
  • [7] NEW CALCULATION OF PROMPT FISSION NEUTRON-SPECTRA AND AVERAGE PROMPT NEUTRON MULTIPLICITIES
    MADLAND, DG
    NIX, JR
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1982, 81 (02) : 213 - 271
  • [8] Mannhart W., 1989, Status of the Cf-252 fission neutron spectrum evaluation with regard to recent experiments (INDC(NDS)-220)
  • [9] A measurement of the 27Al (d,n) spectrum for use in neutron detector calibration
    Massey, TN
    Al-Quraishi, S
    Brient, CE
    Guillemette, JF
    Grimes, SM
    Jacobs, D
    O'Donnell, JE
    Oldendick, J
    Wheeler, R
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1998, 129 (02) : 175 - 179
  • [10] IMPROVED PREDICTIONS OF NEUTRON DETECTION EFFICIENCY RESULTING FROM NEW MEASUREMENTS OF C-12(N,P) AND C-12(N,D) REACTIONS AT 56 MEV
    MCNAUGHTON, MW
    KING, NSP
    BRADY, FP
    ULLMANN, JL
    [J]. NUCLEAR INSTRUMENTS & METHODS, 1975, 129 (01): : 241 - 245