A large-scale evaluation framework for EEG deep learning architectures

被引:8
|
作者
Heilmeyer, Felix A. [1 ]
Schirrmeister, Robin T. [1 ]
Fiederer, Lukas D. J. [1 ]
Voelker, Martin [1 ]
Behncke, Joos [1 ]
Ball, Tonio [1 ]
机构
[1] Univ Med Ctr Freiburg, Translat Neurotechnol Lab, Freiburg, Germany
关键词
EEG; BCI; Deep Learning; Convolutional Neural Networks; Braindecode; EEGNet; FBCSP; Performance Comparison;
D O I
10.1109/SMC.2018.00185
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
EEG is the most common signal source for noninvasive BCI applications. For such applications, the EEG signal needs to be decoded and translated into appropriate actions. A recently emerging EEG decoding approach is deep learning with Convolutional or Recurrent Neural Networks (CNNs, RNNs) with many different architectures already published. Here we present a novel framework for the large-scale evaluation of different deep-learning architectures on different EEG datasets. This framework comprises (i) a collection of EEG datasets currently including 100 examples (recording sessions) from six different classification problems, (ii) a collection of different EEG decoding algorithms, and (iii) a wrapper linking the decoders to the data as well as handling structured documentation of all settings and (hyper-) parameters and statistics, designed to ensure transparency and reproducibility. As an applications example we used our framework by comparing three publicly available CNN architectures: the Braindecode Deep4 ConvNet, Braindecode Shallow ConvNet, and two versions of EEGNet. We also show how our framework can be used to study similarities and differences in the performance of different decoding methods across tasks. We argue that the deep learning EEG framework as described here could help to tap the full potential of deep learning for BCI applications.
引用
收藏
页码:1039 / 1045
页数:7
相关论文
共 50 条
  • [21] DeepCPI:A Deep Learning-based Framework for Large-scale in silico Drug Screening
    Fangping Wan
    Yue Zhu
    Hailin Hu
    Antao Dai
    Xiaoqing Cai
    Ligong Chen
    Haipeng Gong
    Tian Xia
    Dehua Yang
    MingWei Wang
    Jianyang Zeng
    Genomics,Proteomics & Bioinformatics, 2019, (05) : 478 - 495
  • [22] DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening
    Wan, Fangping
    Zhu, Yue
    Hu, Hailin
    Dai, Antao
    Cai, Xiaoqing
    Chen, Ligong
    Gong, Haipeng
    Xia, Tian
    Yang, Dehua
    Wang, Ming-Wei
    Zeng, Jianyang
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2019, 17 (05) : 478 - 495
  • [23] Object Detection in Large-Scale Remote Sensing Images With a Distributed Deep Learning Framework
    Liu, Linkai
    Liu, Yuanxing
    Yan, Jining
    Liu, Hong
    Li, Mingming
    Wang, Jinlin
    Zhou, Kefa
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8142 - 8154
  • [24] DeepCPI:A Deep Learning-based Framework for Large-scale in silico Drug Screening
    Fangping Wan
    Yue Zhu
    Hailin Hu
    Antao Dai
    Xiaoqing Cai
    Ligong Chen
    Haipeng Gong
    Tian Xia
    Dehua Yang
    Ming-Wei Wang
    Jianyang Zeng
    Genomics,Proteomics & Bioinformatics, 2019, 17 (05) : 478 - 495
  • [25] Efficient Large-scale Deep Learning Framework for Heterogeneous Multi-GPU Cluster
    Kim, Youngrang
    Choi, Hyeonseong
    Lee, Jaehwan
    Kim, Jik-Soo
    Jei, Hyunseung
    Roh, Hongchan
    2019 IEEE 4TH INTERNATIONAL WORKSHOPS ON FOUNDATIONS AND APPLICATIONS OF SELF* SYSTEMS (FAS*W 2019), 2019, : 176 - 181
  • [26] An Efficient Group Federated Learning Framework for Large-Scale EEG-Based Driver Drowsiness Detection
    Chen, Xinyuan
    Niu, Yi
    Zhao, Yanna
    Qin, Xue
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (01)
  • [27] An Incremental Learning framework for Large-scale CTR Prediction
    Katsileros, Petros
    Mandilaras, Nikiforos
    Mallis, Dimitrios
    Pitsikalis, Vassilis
    Theodorakis, Stavros
    Chamiel, Gil
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 490 - 493
  • [28] A Large-Scale Ensemble Learning Framework for Demand Forecasting
    Park, Young-Jin
    Kim, Donghyun
    Odermatt, Frederic
    Lee, Juho
    Kim, Kyung-Min
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 378 - 387
  • [29] Deep learning for the large-scale cancer data analysis
    Tsuji, Shingo
    Aburatani, Hiroyuki
    CANCER RESEARCH, 2015, 75 (22)
  • [30] Deep Reinforcement Learning for Large-Scale Epidemic Control
    Libin, Pieter J. K.
    Moonens, Arno
    Verstraeten, Timothy
    Perez-Sanjines, Fabian
    Hens, Niel
    Lemey, Philippe
    Nowe, Ann
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2020, PT V, 2021, 12461 : 155 - 170