Electron velocity distribution instability in magnetized plasma wakes and artificial electron mass

被引:18
作者
Hutchinson, I. H. [1 ,2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
LUNAR WAKE; PARTICLE DISTRIBUTIONS; VACUUM; WIND; SIMULATIONS; EXPANSION; MOON;
D O I
10.1029/2011JA017119
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The wake behind a large object (such as the moon) moving rapidly through a plasma (such as the solar wind) contains a region of depleted density, into which the plasma expands along the magnetic field, transverse to the flow. It is shown here that (in addition to any ion instability) a bump-on-tail which is unstable appears on the electrons' parallel velocity distribution function because of the convective non-conservation of parallel energy (drift-energization). It arises regardless of any non-thermal features on the external electron velocity distribution. The detailed electron distribution function throughout the wake is calculated by integration along orbits; and the substantial energy level of resulting electron plasma (Langmuir) turbulence is evaluated quasi-linearly. It peaks near the wake axis. If the mass of the electrons is artificially enhanced, for example in order to make numerical simulation feasible, then much more unstable electron distributions arise; but these are caused by the unphysical mass ratio.
引用
收藏
页数:11
相关论文
共 31 条
  • [11] First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake
    Halekas, J. S.
    Angelopoulos, V.
    Sibeck, D. G.
    Khurana, K. K.
    Russell, C. T.
    Delory, G. T.
    Farrell, W. M.
    McFadden, J. P.
    Bonnell, J. W.
    Larson, D.
    Ergun, R. E.
    Plaschke, F.
    Glassmeier, K. H.
    [J]. SPACE SCIENCE REVIEWS, 2011, 165 (1-4) : 93 - 107
  • [12] Electrons and magnetic fields in the lunar plasma wake
    Halekas, JS
    Bale, SD
    Mitchell, DL
    Lin, RP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A7)
  • [13] Comment on "Mathematical and physical aspects of Kappa velocity distribution" [Phys. Plasmas 14, 110702 (2007)]
    Hellberg, M. A.
    Mace, R. L.
    Baluku, T. K.
    Kourakis, I.
    Saini, N. S.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (09)
  • [14] HINES CO, 1963, PLANET SPACE SCI, V10, P239
  • [15] Flowing plasmas and absorbing objects: analytic and numerical solutions culminating 80 years of ion-collection theory
    Hutchinson, I. H.
    Patacchini, L.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
  • [16] Ion collection by oblique surfaces of an object in a transversely flowing strongly magnetized plasma
    Hutchinson, I. H.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (03)
  • [17] Oblique ion collection in the drift approximation: How magnetized Mach probes really work
    Hutchinson, I. H.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (12)
  • [18] Formation of the lunar wake in quasi-neutral hybrid model
    Kallio, E
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (06) : 1 - 5
  • [19] Observations of plasma waves during a traversal of the moon's wake
    Kellogg, PJ
    Goetz, K
    Monson, SJ
    Bougeret, JL
    Manning, R
    Kaiser, ML
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (10) : 1267 - 1270
  • [20] FAST FERMI AND GRADIENT DRIFT ACCELERATION OF ELECTRONS AT NEARLY PERPENDICULAR COLLISIONLESS SHOCKS
    KRAUSSVARBAN, D
    WU, CS
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A11): : 15367 - 15372