uncertainty principles;
short-time Fourier transforms;
Gabor frames;
sparsity;
signal recovery;
D O I:
10.1016/j.acha.2007.09.008
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Classical and recent results on uncertainty principles for functions on finite Abelian groups relate the cardinality of the support of a function to the cardinality of the support of its Fourier transform. We obtain corresponding results relating the support sizes of functions and their short-lime Fourier transforms. We use our findings to construct a class of equal norm tight Gabor frames that are maximally robust to erasures. Also, we discuss consequences of our findings to the theory of recovering and storing signals with sparse time-frequency representations. (c) 2007 Elsevier Inc. All rights reserved.
机构:
Univ Salento, Dipartimento Matemat & Fis E De Giorgi, CP 193, I-73100 Lecce, ItalyUniv Salento, Dipartimento Matemat & Fis E De Giorgi, CP 193, I-73100 Lecce, Italy
Albanese, Angela A.
论文数: 引用数:
h-index:
机构:
Mele, Claudio
Oliaro, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Salento, Dipartimento Matemat & Fis E De Giorgi, CP 193, I-73100 Lecce, Italy
机构:
Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USAUniv Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
Roberts, DS
Jones, DL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USAUniv Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
Jones, DL
2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS,
2003,
: 445
-
448