Loureirin C ameliorates ischemia and reperfusion injury in rats by inhibiting the activation of the TLR4/NF-κB pathway and promoting TLR4 degradation

被引:11
|
作者
Xu, Jikai [1 ,2 ]
Liu, Jingyu [1 ,2 ]
Li, Qing [1 ,2 ]
Mi, Yan [1 ,2 ]
Zhou, Di [3 ]
Wang, Jian [3 ]
Chen, Gang [3 ]
Liang, Dong [4 ]
Li, Ning [3 ]
Hou, Yue [1 ,2 ]
机构
[1] Northeastern Univ, Coll Life & Hlth Sci, Natl Frontiers Sci Ctr Ind Intelligence & Syst Op, Shenyang 110169, Peoples R China
[2] Northeastern Univ, Key Lab Data Analyt & Optimizat Smart Ind, Minist Educ, Shenyang, Peoples R China
[3] Shenyang Pharmaceut Univ, Sch Tradit Chinese Mat Med, Key Lab TCM Mat Basis Study & Innovat Drug Dev Sh, Shenyang, Peoples R China
[4] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, State Key Lab Chem & Mol Engn Med Resources, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Chinese Dragon's blood; ischemic stroke; Loureirin C; microglia; TLR4; Triad3A; FOCAL CEREBRAL-ISCHEMIA; STROKE; METAANALYSIS; MECHANISM; PROTECT;
D O I
10.1002/ptr.7571
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Ischemic stroke is a leading cause of death and disability worldwide. Post-ischemia, microglia respond immediately to the alternations in neuronal activity and mediate inflammation. Toll-like receptor 4 (TLR4) plays a key role in this phenomenon. To explore the effect of loureirin C, an effective compound from Chinese Dragon's blood, on ischemic stroke, Sprague-Dawley rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) with/without intragastric administration of loureirin C (7, 14, and 28 mg/kg). Loureirin C alleviated MCAO/R-induced brain impairment evaluated by neurological scores (p < 0.001), brain water content (p < 0.001), and cerebral infarct volume (p = 0.001). The neuroprotective (p < 0.001) and inhibitory effects on microglial activation (p < 0.001) of loureirin C were revealed by immunofluorescence. Rescue studies with TLR4 overexpression in BV-2 microglia showed that the antiinflammatory effect of loureirin C was attributable to the inhibition of TLR4 protein expression. Moreover, co-immunoprecipitation assays showed that the binding of Triad3A, an E3 ubiquitin ligase of TLR4, was increased by loureirin C (p = 0.003). Our study demonstrates that loureirin C could be a promising therapeutic agent for the management of ischemic stroke by inhibiting microglial activation, potentially by Triad3A-mediated promotion of TLR4 ubiquitination and degradation.
引用
收藏
页码:4527 / 4541
页数:15
相关论文
共 50 条
  • [21] Melatonin attenuates white matter damage after focal brain ischemia in rats by regulating the TLR4/NF-κB pathway
    Zhao, Yansong
    Wang, Haiyu
    Chen, Wei
    Chen, Lanfen
    Liu, Dianmei
    Wang, Xin
    Wang, Xiaoli
    BRAIN RESEARCH BULLETIN, 2019, 150 : 168 - 178
  • [22] Exendin-4 inhibits lipotoxicity-induced oxidative stress in β-cells by inhibiting the activation of TLR4/NF-κB signaling pathway
    Shen, Ximei
    Luo, Liufen
    Yang, Meng
    Lin, Yuxi
    Li, Jing
    Yang, Liyong
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2020, 45 (04) : 1237 - 1249
  • [23] Pien-Tze-Huang attenuates neuroinflammation in cerebral ischaemia-reperfusion injury in rats through the TLR4/NF-κB/MAPK pathway
    Zhang, Xiaoqin
    Zhang, Qing
    Huang, Lili
    Liu, Mingzhen
    Cheng, Zaixing
    Zheng, Yanfang
    Xu, Wen
    Lu, Jinjian
    Liu, Jian
    Huang, Mingqing
    PHARMACEUTICAL BIOLOGY, 2021, 59 (01) : 828 - 839
  • [24] Molecular Hydrogen Mediates Neurorestorative Effects After Stroke in Diabetic Rats: the TLR4/NF-κB Inflammatory Pathway
    Yang, Wan-Chao
    Li, Ting-ting
    Wan, Qiang
    Zhang, Xin
    Sun, Li-Ying
    Zhang, Yu-Rong
    Lai, Pei-Chen
    Li, Wen-zhi
    JOURNAL OF NEUROIMMUNE PHARMACOLOGY, 2023, 18 (1-2) : 90 - 99
  • [25] Physcion Protects Rats Against Cerebral Ischemia-Reperfusion Injury via Inhibition of TLR4/NF-kB Signaling Pathway
    Dong, Xiaobo
    Wang, Lei
    Song, Guangrong
    Cai, Xu
    Wang, Wenxin
    Chen, Jiaqi
    Wang, Gesheng
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2021, 15 : 277 - 287
  • [26] Propofol ameliorates ischemic brain injury by blocking TLR4 pathway in mice
    Mitsui, Kazuha
    Kotoda, Masakazu
    Hishiyama, Sohei
    Takamino, Ayasa
    Morikawa, Sho
    Ishiyama, Tadahiko
    Matsukawa, Takashi
    TRANSLATIONAL NEUROSCIENCE, 2022, 13 (01) : 246 - 254
  • [27] Tetramethylpyrazine attenuates endotoxin-induced retinal inflammation by inhibiting microglial activation via the TLR4/NF-κB signalling pathway
    Han, Xiaokun
    Chen, Xi
    Chen, Shuilian
    Luo, Qian
    Liu, Xuan
    He, Anqi
    He, Shengyu
    Qiu, Jin
    Chen, Pei
    Wu, Yihui
    Zhuang, Jiejie
    Yang, Meng
    Wu, Chuangran
    Wu, Nandan
    Yang, Ying
    Ge, Jian
    Zhuang, Jing
    Yu, Keming
    BIOMEDICINE & PHARMACOTHERAPY, 2020, 128
  • [28] Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway
    Hu, Jian
    Wang, Xue
    Chen, Xiongjian
    Fang, Yani
    Chen, Kun
    Peng, Wenshuo
    Wang, Zhengyi
    Guo, Kaiming
    Tan, Xianxi
    Liang, Fei
    Lin, Li
    Xiong, Ye
    JOURNAL OF NEUROINFLAMMATION, 2022, 19 (01)
  • [29] Remote ischemic postconditioning protects ischemic brain from injury in rats with focal cerebral ischemia/reperfusion associated with suppression of TLR4 and NF-κB expression
    Qi, Wenqian
    Zhou, Fangfang
    Li, Shuai
    Zong, Yonghua
    Zhang, Mingxiao
    Lin, Yousheng
    Zhang, Xiao
    Yang, Huijun
    Zou, Yu
    Qi, Cunfang
    Wang, Tinghua
    Hu, Xiaosong
    NEUROREPORT, 2016, 27 (07) : 469 - 475
  • [30] Exercise Therapy Downregulates the Overexpression of TLR4, TLR2, MyD88 and NF-κB after Cerebral Ischemia in Rats
    Ma, Yuewen
    He, Man
    Qiang, Lin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (02) : 3718 - 3733