Realization of graded-simple algebras as loop algebras

被引:32
作者
Allison, Bruce [1 ]
Berman, Stephen
Faulkner, John [2 ]
Pianzola, Arturo [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1515/FORUM.2008.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiloop algebras determined by n commuting algebra automorphisms of finite order are natural generalizations of the classical loop algebras that are used to realize affine Kac-Moody Lie algebras. In this paper, we obtain necessary and sufficient conditions for a Z(n)-graded algebra to be realized as a multiloop algebra based on a finite dimensional simple algebra over an algebraically closed field of characteristic 0. We also obtain necessary and sufficient conditions for two such multiloop algebras to be graded-isomorphic, up to automorphism of the grading group. We prove these facts as consequences of corresponding results for a generalization of the multiloop construction. This more general setting allows us to work naturally and conveniently with arbitrary grading groups and arbitrary base fields.
引用
收藏
页码:395 / 432
页数:38
相关论文
共 27 条
[1]  
Allison B., 1997, MEM AM MATH SOC, V126
[2]   Iterated loop algebras [J].
Allison, Bruce ;
Berman, Stephen ;
Pianzola, Arturo .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (01) :1-41
[3]  
[Anonymous], 1964, J REINE ANGEW MATH, V213, P187
[4]   Gradings on simple Jordan and Lie algebras [J].
Bahturin, YA ;
Shestakov, IP ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 2005, 283 (02) :849-868
[5]   Group gradings on associative algebras [J].
Bahturin, YA ;
Sehgal, SK ;
Zaicev, MV .
JOURNAL OF ALGEBRA, 2001, 241 (02) :677-698
[6]   The centroid of extended affine and root graded Lie algebras [J].
Benkart, G ;
Neher, E .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 205 (01) :117-145
[7]   THE ALTERNATIVE TORUS AND THE STRUCTURE OF ELLIPTIC QUASI-SIMPLE LIE-ALGEBRAS OF TYPE A(2) [J].
BERMAN, S ;
GAO, Y ;
KRYLYUK, Y ;
NEHER, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (11) :4315-4363
[8]   Quantum tori and the structure of elliptic quasi-simple Lie algebras [J].
Berman, S ;
Gao, Y ;
Krylyuk, YS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :339-389
[9]  
BOULAGOUAZ M, 1994, LECT NOTES PURE APPL, V153, P27
[10]  
Bourbaki Nicolas, 1989, ELEMENTS MATH