Speech enhancement with noise parameter estimated by a sequential Monte Carlo method

被引:0
|
作者
Yao, KS [1 ]
Lee, TW [1 ]
机构
[1] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
来源
PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a speech enhancement scheme that is based on sequential time-varying noise parameter estimation and time-varying linear, filter. The time-varying noise parameter is estimated within a Bayesian framework by a sequential Monte Carlo method. The method approximates posterior probabilities of speech and noise parameters by a set of samples and estimates the time-varying noise parameters by minimum mean square error estimation over these samples. The time-varying filter can make use of the masking properties of human auditory systems. The proposed speech enhancement scheme can work in non-stationary noise. Experiments were conducted in various non-stationary noise situations, and results showed that the method could have improved performances as compared to some alternative-methods.
引用
收藏
页码:609 / 612
页数:4
相关论文
共 50 条
  • [21] SEQUENTIAL MONTE CARLO
    HALTON, JH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN): : 57 - &
  • [22] NOISE WITHOUT NOISE - A NEW MONTE-CARLO METHOD
    KENNEDY, AD
    KUTI, J
    PHYSICAL REVIEW LETTERS, 1985, 54 (23) : 2473 - 2476
  • [23] Blind speech dereverberation using batch and sequential Monte Carlo methods
    Evers, Christine
    Hopgood, James R.
    Bell, Judith
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 3226 - +
  • [24] Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling
    Jeremiah, Erwin
    Sisson, Scott A.
    Sharma, Ashish
    Marshall, Lucy
    ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 38 : 283 - 295
  • [25] A Deterministic Sequential Monte Carlo Method for Haplotype Inference
    Liang, Kuo-ching
    Wang, Xiaodong
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (03) : 322 - 331
  • [26] Novel sequential Monte Carlo method to target tracking
    School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    Dianzi Yu Xinxi Xuebao, 2007, 9 (2120-2123): : 2120 - 2123
  • [27] An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics
    Wang, Liangliang
    Wang, Shijia
    Bouchard-Cote, Alexandre
    SYSTEMATIC BIOLOGY, 2020, 69 (01) : 155 - 183
  • [28] Multifidelity Approximate Bayesian Computation with Sequential Monte Carlo Parameter Sampling
    Prescott, Thomas P.
    Baker, Ruth E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 788 - 817
  • [29] A SEQUENTIAL REGRESSION METHOD IN MONTE-CARLO STUDIES
    MIHALKO, D
    TONG, YL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1980, 12 (01) : 41 - 50
  • [30] A sequential Monte Carlo method for Bayesian face recognition
    Matsui, Atsushi
    Clippingdale, Simon
    Matsumoto, Takashi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2006, 4109 : 578 - 586