Dirichlet problem associated with a random quasilinear operator in a random domain

被引:0
|
作者
Abddaimi, Y
Michaille, G
机构
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1996年 / 30卷 / 01期
关键词
homogenization; Dirichlet problem; ergodic theory;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the rate of convergence of solutions relative to Dirichlet problems associated with a random quasilinear operator in randomly perforated domains of R(d) With holes whose size tends to 0. Our direct method allows to extend the results already obtained by an epi-convergence method irt the case of symetric operator with deterministic and constant coefficients in a random domain.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 50 条
  • [1] RANDOM DIRICHLET PROBLEM - SCALAR DARCYS-LAW
    CHABI, E
    MICHAILLE, G
    POTENTIAL ANALYSIS, 1995, 4 (02) : 119 - 140
  • [2] A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary
    Bonnaillie-Noel, Virginie
    Dalla Riva, Matteo
    Dambrine, Marc
    Musolino, Paolo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 211 - 267
  • [3] OPERATOR ERROR ESTIMATES FOR HOMOGENIZATION OF THE ELLIPTIC DIRICHLET PROBLEM IN A BOUNDED DOMAIN
    Pakhnin, M. A.
    Suslina, T. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (06) : 949 - 976
  • [4] Homogenization in random dirichlet forms
    Albeverio, S
    Bernabei, MS
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (02) : 341 - 364
  • [5] Dirichlet problem for the Schrodinger operator on a cone
    Qiao, Lei
    Deng, Guan-Tie
    BOUNDARY VALUE PROBLEMS, 2012,
  • [6] Hypoellipticity for infinitely degenerate quasilinear equations and the dirichlet problem
    Cristian Rios
    Eric T. Sawyer
    Richard L. Wheeden
    Journal d'Analyse Mathématique, 2013, 119 : 1 - 62
  • [7] THE SPECTRUM ASYMPTOTICS FOR THE DIRICHLET PROBLEM IN THE CASE OF THE BIHARMONIC OPERATOR IN A DOMAIN WITH HIGHLY INDENTED BOUNDARY
    Kozlov, V. A.
    Nazarov, S. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2011, 22 (06) : 941 - 983
  • [8] The Dirichlet problem in a domain with a slit
    Subbotin, Yu. N.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (01): : 208 - 221
  • [9] The Dirichlet problem in a domain with a slit
    Chernykh, N. I.
    Subbotin, Yu. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 266 : S103 - S117
  • [10] The Dirichlet problem in a domain with a slit
    N. I. Chernykh
    Yu. N. Subbotin
    Proceedings of the Steklov Institute of Mathematics, 2009, 266 : 103 - 117