Hormander's Hypoelliptic Theorem for Nonlocal Operators

被引:2
作者
Hao, Zimo [1 ]
Peng, Xuhui [2 ]
Zhang, Xicheng [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha, Hunan, Peoples R China
关键词
Hormander's conditions; Malliavin calculus; Hypoellipticity; Nonlocal operators; FUNDAMENTAL-SOLUTIONS; MALLIAVIN CALCULUS; SMOOTH DENSITIES; EQUATIONS; REGULARITY; JUMPS; SDES;
D O I
10.1007/s10959-020-01020-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we show the Hormander hypoelliptic theorem for nonlocal operators by a purely probabilistic method: the Malliavin calculus. Roughly speaking, under general Hormander's Lie bracket conditions, we show the regularization effect of discontinuous Levy noises for possibly degenerate stochastic differential equations with jumps. To treat the large jumps, we use the perturbation argument together with interpolation techniques and some short time asymptotic estimates of the semigroup. As an application, we show the existence of fundamental solutions for operator partial derivative(t)-K, where K is the following nonlocal kinetic operator: K f (x, v) = p.v integral(Rd) (f (x, v + w) - f (x, v)) kappa (x, v, w)/vertical bar w vertical bar(d+alpha) dw + v . del(x) f (x, v) + b (x, v) . del(v) f (x, v). Here kappa(-1)(0) <= kappa(x, v, w) <= kappa(0) belongs to C-b(infinity) (R-3d) and is symmetric in w, p.v. stands for the Cauchy principal value, and b is an element of C-b(infinity) (R-2d; R-d).
引用
收藏
页码:1870 / 1916
页数:47
相关论文
共 50 条
  • [41] Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators
    Kekkonen, Hanne
    Lassas, Matti
    Siltanen, Samuli
    INVERSE PROBLEMS, 2016, 32 (08)
  • [42] A Note on Harnack Inequalities and Propagation Sets for a Class of Hypoelliptic Operators
    Cinti, Chiara
    Nystrom, Kaj
    Polidoro, Sergio
    POTENTIAL ANALYSIS, 2010, 33 (04) : 341 - 354
  • [43] GLOBAL HOLDER ESTIMATES FOR HYPOELLIPTIC OPERATORS WITH DRIFT ON HOMOGENEOUS GROUPS
    Hou, Yuexia
    Feng, Xiaojing
    Cui, Xuewei
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 337 - 347
  • [44] Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators
    Ottobre, M.
    Pavliotis, G. A.
    Pravda-Starov, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) : 676 - 712
  • [45] Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications
    Lee, Hwi
    Du, Qiang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (01): : 105 - 128
  • [46] Propagation of minima for nonlocal operators
    Birindelli, Isabeau
    Galise, Giulio
    Ishii, Hitoshi
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (04) : 1033 - 1046
  • [47] Harnack inequality for nonlocal operators on manifolds with nonnegative curvature
    Kim, Jongmyeong
    Kim, Minhyun
    Lee, Ki-Ahm
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (01)
  • [48] LEARNING NONLOCAL REGULARIZATION OPERATORS
    Holler, Gernot
    Kunisch, Karl
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, 12 (01) : 81 - 114
  • [49] Extension and trace for nonlocal operators
    Bogdan, Krzysztof
    Grzywny, Tomasz
    Pietruska-Paluba, Katarzyna
    Rutkowski, Artur
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 137 : 33 - 69
  • [50] Obstacle problems for nonlocal operators
    Danielli, Donatella
    Petrosyan, Arshak
    Pop, Camelia A.
    NEW DEVELOPMENTS IN THE ANALYSIS OF NONLOCAL OPERATORS, 2019, 723 : 191 - 214