To better understand methodological factors that alter landings strategies, we compared sagittal plane joint energetics during the initial landing phase of drop jumps (DJ) vs. drop landings (DL), and when shod vs. barefoot. Surface electromyography, kinematic and kinetic data were obtained on 10 males and 10 females during five consecutive drop landings and five consecutive drop jumps (0.45 m) when shod and when barefoot. Energy absorption was greater in the DJ vs. DL (P = .002), due to increased energy absorption at the hip during the DJ. Joint stiffness/ impedance was more affected by shoe condition, where overall stiffness/ impedance was greater in shod compared to barefoot conditions (P = .036). Further, hip impedance was greater in shod vs. barefoot for the DL only (via increased peak hip extensor moment in DL), while ankle stiffness was greater in the barefoot vs. shod condition for the DJ only (via decreased joint excursion and increased peak joint moment in DJ vs. DL) (P = .011). DJ and DL place different neuromechanical demands upon the lower extremities, and shoe wear may alter impact forces that modulate stiffness/ impedance strategies. The impact of these methodological differences should be considered when comparing landing biomechanics across studies. (C) 2011 Elsevier Ltd. All rights reserved.