Fractional diffusion in inhomogeneous media

被引:245
作者
Chechkin, AV
Gorenflo, R
Sokolov, IM
机构
[1] Kharkov Phys & Technol Inst, Ctr Nat Sci, Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Free Univ Berlin, Dept Math & Informat, D-14195 Berlin, Germany
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 42期
关键词
D O I
10.1088/0305-4470/38/42/L03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the continuous time random walk (CTRW) scheme with the space-dependent waiting-time probability density function (PDF) we obtain the time-fractional diffusion equation with varying in space fractional order of time derivative. As an example, we study the evolution of a composite system consisting of two separate regions with different subdiffusion exponents and demonstrate the effects of non-trivial drift and subdiffusion whose laws are changed in the course of time.
引用
收藏
页码:L679 / L684
页数:6
相关论文
共 50 条
  • [41] Diffusion in spatially and temporarily inhomogeneous media: Effects of turbulent mixing
    Lehr, H
    Sagues, F
    Sancho, JM
    PHYSICAL REVIEW E, 1997, 56 (02): : 1660 - 1666
  • [42] Anomalous diffusion and fractional diffusion equation: anisotropic media and external forces
    de Andrade, MR
    Lenzi, EK
    Evangelista, LR
    Mendes, RS
    Malacarne, LC
    PHYSICS LETTERS A, 2005, 347 (4-6) : 160 - 169
  • [43] Nonlocal Diffusion in Porous Media: A Spatial Fractional Approach
    Sapora, A.
    Cornetti, P.
    Chiaia, B.
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (05)
  • [44] DECAY OF SOLUTIONS TO A POROUS MEDIA EQUATION WITH FRACTIONAL DIFFUSION
    Niche, Cesar J.
    Orive-Illera, Rafael
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2014, 19 (1-2) : 133 - 160
  • [45] A modified fractional Landweber method for a backward problem for the inhomogeneous time-fractional diffusion equation in a cylinder
    Yang, Shuping
    Xiong, Xiangtuan
    Han, Yaozong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (11) : 2375 - 2393
  • [46] Asymptotics for fractional reaction diffusion equations in periodic media
    Wei, Yu
    Wang, Yahan
    Lu, Huiqin
    AIMS MATHEMATICS, 2025, 10 (02): : 3819 - 3835
  • [47] Inhomogeneous oscillatory solutions in fractional reaction-diffusion systems and their computer modeling
    Gafiychuk, V.
    Datsko, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) : 251 - 260
  • [48] On a final value problem for the time-fractional diffusion equation with inhomogeneous source
    Nguyen Huy Tuan
    Le Dinh Long
    Van Thinh Nguyen
    Thanh Tran
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (09) : 1367 - 1395
  • [49] Inhomogeneous membrane receptor diffusion explained by a fractional heteroscedastic time series model
    Balcerek, Michal
    Loch-Olszewska, Hanna
    Torreno-Pina, Juan A.
    Garcia-Parajo, Maria F.
    Weron, Aleksander
    Manzo, Carlo
    Burnecki, Krzysztof
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (06) : 3114 - 3121
  • [50] Recovery of the solute concentration and dispersion flux in an inhomogeneous time fractional diffusion equation
    Nguyen Huy Tuan
    Tran Bao Ngoc
    Tatar, Salih
    Le Dinh Long
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 342 : 96 - 118