On Critical p-Laplacian Systems

被引:4
作者
Guo, Zhenyu [1 ,2 ]
Perera, Kanishka [3 ]
Zou, Wenming [2 ]
机构
[1] Liaoning Shihua Univ, Sch Sci, Fushun, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
关键词
Nehari Manifold; p-Laplacian Systems; Least Energy Solutions; Critical Exponent; POSITIVE SOLUTIONS; WEAK SOLUTIONS; EQUATIONS; EXISTENCE; NONLINEARITY; EIGENVALUE; SYMMETRY;
D O I
10.1515/ans-2017-6029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the critical p-Laplacian system {-Delta(p)u - lambda a/p vertical bar u vertical bar(a-2)u vertical bar nu vertical bar(b) = mu(1)vertical bar u vertical bar p*(-2) u + alpha gamma/p*vertical bar u vertical bar(alpha-2) u vertical bar nu vertical bar(beta) , x is an element of Omega , -Delta(p)nu - lambda b/p vertical bar u vertical bar(a)vertical bar nu vertical bar(b-2) nu = mu(2)vertical bar nu vertical bar(p)*(-2) nu + beta gamma/p*vertical bar u vertical bar(alpha)vertical bar nu vertical bar(beta-2) nu, x is an element of Omega, u, nu in D-0(1,p) (Omega), where Delta(p)u := div(vertical bar del u vertical bar(p-2) del u) is the p-Laplacian operator defined on D-1,D-p (R-N) := {u is an element of L-p* (R-N) : vertical bar del u vertical bar is an element of L-p (R-N) }, endowed with the norm parallel to u parallel to D-1,D-p := ( integral(RN)vertical bar del u vertical bar(p) dx)(1/p) , N >= 3, 1 < p < N, lambda, mu(1) , mu(2) >= 0 ,gamma not equal 0 , a, b, alpha, beta > 1 satisfy a + b = p, alpha + beta = p* := Np/N-p, the critical Sobolev exponent, Omega is R-N or a bounded domain in R-N and D-0(1,p) (Omega) is the closure of C-0(infinity) (Omega) in D-1,D-p(R-N). Under suitable assumptions, we establish the existence and nonexistence of a positive least energy solution of this system. We also consider the existence and multiplicity of the nontrivial nonnegative solutions.
引用
收藏
页码:641 / 659
页数:19
相关论文
共 26 条
[1]  
[Anonymous], 2003, SOBOLEV SPACES
[2]   Nonexistence of Positive Supersolutions of Elliptic Equations via the Maximum Principle [J].
Armstrong, Scott N. ;
Sirakov, Boyan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (11) :2011-2047
[3]   A priori estimates and continuation methods for positive solutions of p-Laplace equations [J].
Azizieh, C ;
Clément, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :213-245
[5]   ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS OF SOLUTIONS TO ELLIPTIC AND PARABOLIC EQUATIONS [J].
BOCCARDO, L ;
MURAT, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :581-597
[6]   Some remarks on a system of quasilinear elliptic equations [J].
Boccardo, L ;
de Figueiredo, DG .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (03) :309-323
[7]   Existence of multiple solutions for quasilinear systems via fibering method [J].
Bozhkov, Y ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (01) :239-267
[8]   Symmetry and monotonicity of least energy solutions [J].
Byeon, Jaeyoung ;
Jeanjean, Louis ;
Maris, Mihai .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (04) :481-492
[9]   Regularity and Morse Index of the Solutions to Critical Quasilinear Elliptic Systems [J].
Carmona, Jose ;
Cingolani, Silvia ;
Martinez-Aparicio, Pedro J. ;
Vannella, Giuseppina .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (10) :1675-1711
[10]   On positive weak solutions for a class of quasilinear elliptic systems [J].
Chen, CS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) :751-756