On two-variable rational interpolation

被引:33
作者
Antoulas, A. C. [1 ]
Ionita, A. C.
Lefteriu, S.
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
关键词
Multivariate rational interpolation; Two-variable rational functions; Lagrange bases; Loewner matrix; Generalized (descriptor) realizations; Parametrized systems and model reduction; REALIZATION; SYSTEMS; HANKEL;
D O I
10.1016/j.laa.2011.07.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this contribution is to investigate interpolation of two-variable rational functions. The tool is the two-variable Loewner matrix, which is an extension of its single-variable counterpart. The main property of the Loewner matrix is that its rank encodes the information concerning minimal complexity interpolants. Both polynomial and generalized state-space (descriptor) realizations of interpolants are presented. Examples illustrate how two-variable rational functions can be recovered from appropriate measurements. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2889 / 2915
页数:27
相关论文
共 24 条
[1]   RATIONAL INTERPOLATION AND STATE-VARIABLE REALIZATIONS [J].
ANDERSON, BDO ;
ANTOULAS, AC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 137 :479-509
[2]   On the Scalar Rational Interpolation Problem [J].
Antoulas, A. C. ;
Anderson, B. D. Q. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (2-3) :61-88
[3]  
Antoulas A. C., 2005, ADV DESIGN CONTROL, V6
[4]  
ANTOULAS AC, 1990, PROG SYST C, V3, P73
[5]  
BELEVITCH V, 1970, PHILIPS RES REP, V25, P337
[6]   Barycentric Lagrange interpolation [J].
Berrut, JP ;
Trefethen, LN .
SIAM REVIEW, 2004, 46 (03) :501-517
[7]  
CHEN GN, 1994, LINEAR ALGEBRA APPL, V204, P265, DOI 10.1016/0024-3795(94)90206-2
[8]  
Donoghue W.F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
[9]   REALIZATION AND STABILIZATION OF 2-D SYSTEMS [J].
EISING, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (05) :793-799
[10]   HANKEL AND LOEWNER MATRICES [J].
FIEDLER, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) :75-95