Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data

被引:33
作者
Liu, Chongyang [1 ,2 ]
Gong, Zhaohua [1 ]
Teo, Kok Lay [2 ]
机构
[1] Shandong Inst Business & Technol, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[2] Curtin Univ, Dept Math & Stat, Perth, WA 6102, Australia
基金
澳大利亚研究理事会;
关键词
Multistage system; Time-delay system; Parameter estimation; Robust parameter estimation; Nonlinear optimization; DYNAMIC OPTIMIZATION PROBLEMS; IDENTIFICATION; FERMENTATION;
D O I
10.1016/j.apm.2017.09.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider estimation problems involving a class of nonlinear systems characterized by two non-standard attributes: (i) such systems evolve over multiple stages; and (ii) the dynamics in each stage involve unknown time-delays and unknown system parameters. These unknown quantities are to be estimated such that a least-squares error function between the system output and a set of noisy measurement data from a real plant is minimized. We first present the classical parameter estimation formulation, where the expectation of the error function is regarded as the cost function. However, in practice, there exists uncertainty in the distribution of the measurement data. The optimal parameter estimate should be able to withstand this uncertainty. Accordingly, we propose a new parameter estimation formulation, in which the cost function is the variance of the error function and the constraint indicates an allowable sacrifice from the optimal expectation value of the classical parameter estimation problem. For these two estimation problems, we show that the gradients of their cost functions and the constraint function with respect to the time-delays and system parameters can be computed through solving a set of auxiliary time-delay systems in conjunction with the governing multistage time delay system, simultaneously. On this basis, we develop gradient-based optimization algorithms to determine the unknown time-delays and system parameters. Finally, we consider two example problems to illustrate the effectiveness and applicability of our proposed algorithms. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:353 / 368
页数:16
相关论文
共 36 条
[1]  
Ahmed NasirUddin., 2006, Dynamic Systems and Control with Applications
[2]   Dynamic optimization of single- and multi-stage systems using a hybrid Stochastic-deterministic method [J].
Balsa-Canto, E ;
Vassiliadis, VS ;
Banga, JR .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (05) :1514-1523
[3]   PARAMETER-ESTIMATION AND IDENTIFICATION FOR SYSTEMS WITH DELAYS [J].
BANKS, HT ;
BURNS, JA ;
CLIFF, EM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (06) :791-828
[4]  
Bard Y., 1974, Nonlinear parameter estimation
[5]   Parameters estimation of systems with delayed and structured entries [J].
Belkoura, Lotfi ;
Richard, Jean-Pierre ;
Fliess, Michel .
AUTOMATICA, 2009, 45 (05) :1117-1125
[6]   Covariance matrices for parameter estimates of constrained parameter estimation problems [J].
Bock, Hans Georg ;
Kostina, Ekaterina ;
Kostyukova, Olga .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) :626-642
[7]   Algorithms for time delay estimation using a low complexity exhaustive search [J].
Carlemalm, C ;
Halvarsson, S ;
Wigren, T ;
Wahlberg, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :1031-1037
[8]   A UNIFIED PARAMETER IDENTIFICATION METHOD FOR NONLINEAR TIME-DELAY SYSTEMS [J].
Chai, Qinqin ;
Loxton, Ryan ;
Teo, Kok Lay ;
Yang, Chunhua .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (02) :471-486
[9]   OPTIMAL MULTIPROCESSES [J].
CLARKE, FH ;
VINTER, RB .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (05) :1072-1091
[10]  
Debeljkovie D., 2011, TIME DELAY SYSTEMS