Existence and stability of entire solutions to a semilinear fourth order elliptic problem

被引:25
作者
Berchio, Elvise [2 ]
Farina, Alberto [1 ]
Ferrero, Alberto [3 ]
Gazzola, Filippo [2 ]
机构
[1] Univ Picardie Jules Verne, Fac Math & Informat, LAMFA, CNRS UMR 6140, F-80039 Amiens, France
[2] Dipartimento Matemat Politecn, I-20133 Milan, Italy
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
Biharmonic equations; Radial solutions; Stability; EXPONENTIAL NONLINEARITY; R-N; BIHARMONIC OPERATOR; STABLE-SOLUTIONS; HIGHER-ORDER; DELTA-U; EQUATIONS; CLASSIFICATION; E(U);
D O I
10.1016/j.jde.2011.09.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a semilinear biharmonic equation with exponential nonlinearity, we study the existence and the asymptotic behavior of entire solutions. Furthermore, their stability and stability outside a compact set of R-n (n >= 2) is discussed in any space dimension n. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2596 / 2616
页数:21
相关论文
共 34 条
[31]  
Rellich F., 1956, P INT C MATH 1954 AM, VIII, P243
[33]   Liouville theorems for stable radial solutions for the biharmonic operator [J].
Warnault, Guillaume .
ASYMPTOTIC ANALYSIS, 2010, 69 (1-2) :87-98
[34]  
Wei JC, 2008, CALC VAR PARTIAL DIF, V32, P373, DOI 10.1007/s00526-007-0145-2