Magnetohydrodynamic simulations of massive gas injection into Alcator C-Mod and DIII-D plasmas

被引:63
作者
Izzo, V. A. [1 ]
Whyte, D. G. [2 ]
Granetz, R. S. [2 ]
Parks, P. B. [3 ]
Hollmann, E. M. [1 ]
Lao, L. L. [3 ]
Wesley, J. C. [3 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[3] Gen Atom Co, San Diego, CA 92186 USA
关键词
D O I
10.1063/1.2841526
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Disruption mitigation experiments using massive gas injection (MGI) on Alcator C-Mod [Hutchinson , Phys. Plasmas 1, 1511 (1994)] and DIII-D [Luxon and Davis, Fusion Technol. 8, 441 (1985)] have shown that magnetohydrodynamics (MHD) plays an important role. The three-dimensional MHD code NIMROD [Sovinec , J. Comput. Phys. 195, 355 (2004)] has been extended to include atomic physics taken from the KPRAD code to perform simulations of MGI. Considerable benchmarking of the code has been done against Alcator C-Mod for neon and helium gas jet experiments. The code successfully captures the qualitative sequence of events observed in MGI experiments up to the end of the thermal quench. Neon jet simulations also show quantitative agreement with the experimental thermal quench onset time. For helium gas jets, we show that a small percent boron density can significantly alter the results even in the presence of a helium jet with three orders of magnitude higher density. The thermal quench onset time is considerably overpredicted unless boron radiation is included. A DIII-D helium jet simulation shows a faster rise time for total radiated power than the experiment, but comparable amplitude. Similar to the important role of boron in C-Mod, carbon radiation is a significant factor in DIII-D helium jet simulations and experiments. (C) 2008 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 17 条
[11]   Theory for avalanche of runaway electrons in tokamaks [J].
Rosenbluth, MN ;
Putvinski, SV .
NUCLEAR FUSION, 1997, 37 (10) :1355-1362
[12]   Progress in the ITER Physics Basis - Chapter 1: Overview and summary [J].
Shimada, M. ;
Campbell, D. J. ;
Mukhovatov, V. ;
Fujiwara, M. ;
Kirneva, N. ;
Lackner, K. ;
Nagami, M. ;
Pustovitov, V. D. ;
Uckan, N. ;
Wesley, J. ;
Asakura, N. ;
Costley, A. E. ;
Donne, A. J. H. ;
Doyle, E. J. ;
Fasoli, A. ;
Gormezano, C. ;
Gribov, Y. ;
Gruber, O. ;
Hender, T. C. ;
Houlberg, W. ;
Ide, S. ;
Kamada, Y. ;
Leonard, A. ;
Lipschultz, B. ;
Loarte, A. ;
Miyamoto, K. ;
Mukhovatov, V. ;
Osborne, T. H. ;
Polevoi, A. ;
Sipps, A. C. C. .
NUCLEAR FUSION, 2007, 47 (06) :S1-S17
[13]   Nonlinear magnetohydrodynamics simulation using high-order finite elements [J].
Sovinec, CR ;
Glasser, AH ;
Gianakon, TA ;
Barnes, DC ;
Nebel, RA ;
Kruger, SE ;
Schnack, DD ;
Plimpton, SJ ;
Tarditi, A ;
Chu, MS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) :355-386
[14]   Disruption mitigation studies in DIII-D [J].
Taylor, PL ;
Kellman, AG ;
Evans, TE ;
Gray, DS ;
Humphreys, DA ;
Hyatt, AW ;
Jernigan, TC ;
Lee, RL ;
Leuer, JA ;
Luckhardt, SC ;
Parks, PB ;
Schaffer, MJ ;
Whyte, DG ;
Zhang, J .
PHYSICS OF PLASMAS, 1999, 6 (05) :1872-1879
[15]   RESISTIVE RECONNECTION [J].
WHITE, RB .
REVIEWS OF MODERN PHYSICS, 1986, 58 (01) :183-207
[16]   Disruption mitigation on Alcator C-Mod using high-pressure gas injection: Experiments and modeling toward ITER [J].
Whyte, D. G. ;
Granetz, R. ;
Bakhtiari, M. ;
Izzo, V. ;
Jernigan, T. ;
Terry, J. ;
Reinke, M. ;
Lipschultz, B. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 :1160-1167
[17]  
Whyte D G., 1997, P 24 EUR C CONTR FUS, V21A, P1137