Multi-component Cahn-Hilliard systems with dynamic boundary conditions

被引:5
作者
Conti, Monica [1 ]
Gatti, Stefania [2 ]
Miranville, Alain [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, I-41125 Modena, Italy
[3] Univ Poitiers, UMR CNRS SP2MI 7348, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
Multi-component Cahn-Hilliard systems; Dynamic boundary conditions; Well-posedness; Exponential attractors; EXPONENTIAL ATTRACTORS; EQUATION; MODEL; CONVERGENCE; POTENTIALS; TIME;
D O I
10.1016/j.nonrwa.2015.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to study the well-posedness and the asymptotic behavior, in terms of finite-dimensional attractors, of Cahn-Hilliard systems describing phase separation processes in multi-component alloys, endowed with dynamic boundary conditions. Such boundary conditions take into account the interactions with the walls when considering confined systems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 166
页数:30
相关论文
共 38 条
  • [1] [Anonymous], 1997, Infinite Dimensional Dynamical System in Mechanics and Physics
  • [2] Babin A.V., 1992, Attractors of Evolution Equations
  • [3] Study of a three component Cahn-Hilliard flow model
    Boyer, Franck
    Lapuerta, Celine
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (04): : 653 - 687
  • [4] Hierarchy of consistent n-component Cahn-Hilliard systems
    Boyer, Franck
    Minjeaud, Sebastian
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (14) : 2885 - 2928
  • [5] ON SPINODAL DECOMPOSITION
    CAHN, JW
    [J]. ACTA METALLURGICA, 1961, 9 (09): : 795 - 801
  • [6] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [7] Cherfils L., 2013, J. Math. Sci., V189, P604
  • [8] The Cahn-Hilliard Equation with Logarithmic Potentials
    Cherfils, Laurence
    Miranville, Alain
    Zelik, Sergey
    [J]. MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) : 561 - 596
  • [9] Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions
    Chill, Ralph
    Fasangova, Eva
    Pruess, Jan
    [J]. MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) : 1448 - 1462
  • [10] Elliott C.M., 1991, 195 U BONN