Large scale circulation in turbulent Rayleigh-Benard convection of liquid sodium in cylindrical cell

被引:2
|
作者
Mamykin, A. D. [1 ]
Kolesnichenko, I., V [1 ]
Pavlinov, A. M. [1 ]
Khalilov, R., I [1 ]
机构
[1] RAS, Inst Continuous Media Mech, Ural Branch, Academician Korolev St 1, Perm 614013, Russia
来源
3RD ALL-RUSSIAN SCIENTIFIC CONFERENCE THERMOPHYSICS AND PHYSICAL HYDRODYNAMICS WITH THE SCHOOL FOR YOUNG SCIENTISTS | 2018年 / 1128卷
关键词
HEAT-TRANSFER;
D O I
10.1088/1742-6596/1128/1/012019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In agreement with a recent experimental study by Xi et. al. [1], we also observed the sloshing mode of the large scale circulation (LSC) in our experimental investigation of turbulent Rayleigh-Benard convection of liquid sodium in a cylindrical cell of aspect ratio one. The Rayleigh and Prandtl numbers vary within the range of (0.5 - 2.6).10(7) and (8.7 - 9.9).10(-3) respectively. The characteristic times and corresponding Reynolds numbers of the general and sloshing modes of global circulation were estimated by analyzing the cross correlations of temperature oscillations and by determining the locations of peaks on the spectra of temperature fluctuations.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Confined Rayleigh-Benard, Rotating Rayleigh-Benard, and Double Diffusive Convection: A Unifying View on Turbulent Transport Enhancement through Coherent Structure Manipulation
    Chong, Kai Leong
    Yang, Yantao
    Huang, Shi-Di
    Zhong, Jin-Qiang
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    Lohse, Detlef
    Xia, Ke-Qing
    PHYSICAL REVIEW LETTERS, 2017, 119 (06)
  • [32] Comparison of computational codes for direct numerical simulations of turbulent Rayleigh-Benard convection
    Kooij, Gijs L.
    Botchev, Mikhail A.
    Frederix, Edo M. A.
    Geurts, Bernard J.
    Horn, Susanne
    Lohse, Detlef
    van der Poel, Erwin P.
    Shishkina, Olga
    Stevens, Richard J. A. M.
    Verzicco, Roberto
    COMPUTERS & FLUIDS, 2018, 166 : 1 - 8
  • [33] Proper orthogonal decomposition investigation of turbulent Rayleigh-Benard convection in a rectangular cavity
    Podvin, Berengere
    Sergent, Anne
    PHYSICS OF FLUIDS, 2012, 24 (10)
  • [34] Fluctuating Thermal Boundary Layers and Heat Transfer in Turbulent Rayleigh-Benard Convection
    Ching, Emily S. C.
    Dung, On-Yu
    Shishkina, Olga
    JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (3-4) : 626 - 635
  • [35] Thermal radiation in Rayleigh-Benard convection experiments
    Urban, P.
    Kralik, T.
    Hanzelka, P.
    Musilova, V
    Veznik, T.
    Schmoranzer, D.
    Skrbek, L.
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [36] Peculiarity in the Rayleigh-Benard convection of viscoelastic fluids
    Park, H. M.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 132 : 34 - 41
  • [37] Simulation of complex regimes of Rayleigh-Benard convection
    Palymskii I.B.
    Numerical Analysis and Applications, 2011, 4 (02) : 145 - 166
  • [38] Competition between Rayleigh-Benard and horizontal convection
    Couston, Louis-Alexandre
    Nandaha, Joseph
    Favier, Benjamin
    JOURNAL OF FLUID MECHANICS, 2022, 947
  • [39] Bistability in Rayleigh-Benard convection with a melting boundary
    Purseed, J.
    Favier, B.
    Duchemin, L.
    Hester, E. W.
    PHYSICAL REVIEW FLUIDS, 2020, 5 (02)
  • [40] Effects of particle settling on Rayleigh-Benard convection
    Oresta, Paolo
    Prosperetti, Andrea
    PHYSICAL REVIEW E, 2013, 87 (06):