Seismoelectric numerical simulation in 2D vertical transverse isotropic poroelastic medium

被引:19
作者
Tohti, Munirdin [1 ,2 ,3 ]
Wang, Yibo [1 ,3 ]
Slob, Evert [4 ]
Zheng, Yikang [1 ,3 ]
Chang, Xu [1 ,3 ]
Yao, Yi [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resource Res, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing 100029, Peoples R China
[4] Delft Univ Technol, Dept Geosci & Engn, NL-2628 CD Delft, Netherlands
关键词
Poroelastic medium; Seismoelectric coupling; Thomsen parameters; Vertical transverse isotropy; MAXWELLS EQUATIONS; FIELD-MEASUREMENTS; WAVE-PROPAGATION; ELASTIC WAVES; POINT SOURCES; FLUID; CONVERSIONS; VELOCITY;
D O I
10.1111/1365-2478.12958
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismoelectric coupling in an electric isotropic and elastic anisotropic medium is developed using a primary-secondary formulation. The anisotropy is of vertical transverse isotropic type and concerns only the poroelastic parameters. Based on our finite difference time domain algorithm, we solve the seismoelectric response to an explosive source. The seismic wavefields are computed as the primary field. The electric field is then obtained as a secondary field by solving the Poisson equation for the electric potential. To test our numerical algorithm, we compared our seismoelectric numerical results with analytical results obtained from Pride's equation. The comparison shows that the numerical solution gives a good approximation to the analytical solution. We then simulate the seismoelectric wavefields in different models. Simulated results show that four types of seismic waves are generated in anisotropic poroelastic medium. These are the fast and slow longitudinal waves and two separable transverse waves. All of these seismic waves generate coseismic electric fields in a homogenous anisotropic poroelastic medium. The tortuosity has an effect on the propagation of the slow longitudinal wave. The snapshot of the slow longitudinal wave has an oval shape when the tortuosity is anisotropic, whereas it has a circular shape when the tortuosity is isotropic. In terms of the Thomsen parameters, the radiation anisotropy of the fast longitudinal wave is more sensitive to the value of epsilon, while the radiation anisotropy of the transverse wave is more sensitive to the value of delta.
引用
收藏
页码:1927 / 1943
页数:17
相关论文
共 50 条
  • [1] Numerical simulation of seismoelectric wavefields in 3D orthorhombic poroelastic medium
    Tohti, Munirdin
    Wang YiBo
    Xiao WenJiao
    Zhou KeFa
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (11): : 4471 - 4484
  • [2] Stochastic joint inversion of 2D seismic and seismoelectric signals in linear poroelastic materials: A numerical investigation
    Jardani, Abderrahim
    Revil, Andre
    Slob, Evert
    Solllner, Walter
    GEOPHYSICS, 2010, 75 (01) : N19 - N31
  • [3] Numerical simulation of seismic waves in 3-D orthorhombic poroelastic medium with microseismic source implementation
    Tohti, Munirdin
    Wang, Yibo
    Xiao, Wenjiao
    Di, Qingyun
    Zhou, Kefa
    Wang, Jinlin
    An, Shaole
    Liao, Shibin
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (02) : 1012 - 1027
  • [4] Seismoelectric response of 2-D elastic/poroelastic coupled media: a phenomenological approach
    Bucher, F.
    Monachesi, L. B.
    Castroman, G. A.
    Zyserman, F., I
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 236 (01) : 62 - 77
  • [5] Simulation of seismoelectric waves using finite-difference frequency-domain method: 2-D SHTE mode
    Gao, Yongxin
    Wang, Dongdong
    Yao, Cheng
    Guan, Wei
    Hu, Hengshan
    Wen, Jian
    Zhang, Wei
    Tong, Ping
    Yang, Qingjie
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (01) : 414 - 438
  • [6] Simulation of Seismoelectric Waves Using Time-Domain Finite-Element Method in 2D PSVTM Mode
    Li, Jun
    Yin, Changchun
    Liu, Yunhe
    Wang, Luyuan
    Ma, Xinpeng
    REMOTE SENSING, 2023, 15 (13)
  • [7] Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media
    Lefeuve-Mesgouez, G.
    Mesgouez, A.
    Chiavassa, G.
    Lombard, B.
    WAVE MOTION, 2012, 49 (07) : 667 - 680
  • [8] Numerical simulation of water impact for 2D and 3D bodies
    Yang, Qingyong
    Qiu, Wei
    OCEAN ENGINEERING, 2012, 43 : 82 - 89
  • [9] A modified numerical-flux-based discontinuous Galerkin method for 2D wave propagations in isotropic and anisotropic media
    He, Xijun
    Yang, Dinghui
    Ma, Xiao
    Qiu, Chujun
    GEOPHYSICS, 2020, 85 (05) : T257 - T273
  • [10] Numerical simulation of 2D electrodynamic problems with unstructured triangular meshes
    Fadeev, D. A.
    COMPUTER OPTICS, 2019, 43 (03) : 385 - 390