Sharp Asymptotics for Stochastic Dynamics with Parallel Updating Rule

被引:20
作者
Nardi, F. R. [2 ,3 ]
Spitoni, C. [1 ]
机构
[1] Leiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, Netherlands
[2] EURANDOM, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Stochastic dynamics; Probabilistic cellular automata; Metastability; Potential theory; Dirichlet form; Capacity; SMALL TRANSITION-PROBABILITIES; KAWASAKI DYNAMICS; GENERAL DOMAIN; MARKOV-CHAINS; EXIT PROBLEM; METASTABILITY;
D O I
10.1007/s10955-011-0413-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the metastability problem for a stochastic dynamics with a parallel updating rule; in particular we consider a finite volume Probabilistic Cellular Automaton (PCA) in a small external field at low temperature regime. We are interested in the nucleation of the system, i.e., the typical excursion from the metastable phase (the configuration with all minuses) to the stable phase (the configuration with all pluses), triggered by the formation of a critical droplet. The main result of the paper is the sharp estimate of the nucleation time: we show that the nucleation time divided by its average converges to an exponential random variable and that the rate of the exponential random variable is an exponential function of the inverse temperature beta times a prefactor that does not scale with beta. Our approach combines geometric and potential theoretic arguments.
引用
收藏
页码:701 / 718
页数:18
相关论文
共 18 条
[11]   Competitive nucleation in reversible probabilistic cellular automata [J].
Cirillo, Emilio N. M. ;
Nardi, Francesca R. ;
Spitoni, Cristian .
PHYSICAL REVIEW E, 2008, 78 (04)
[12]   Metastability for a stochastic dynamics with a parallel heat bath updating rule [J].
Cirillo, ENM ;
Nardi, FR .
JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (1-2) :183-217
[13]  
DERRIDA B, 1990, FUNDAMENTAL PROBLEMS, V7
[14]  
Hollander F, 2009, LECT NOTES MATH, V1974, P1, DOI 10.1007/978-3-642-00333-2
[15]   Dynamical Blume-Capel model: Competing metastable states at infinite volume [J].
Manzo, F ;
Olivieri, E .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) :1029-1090
[16]   MARKOV-CHAINS WITH EXPONENTIALLY SMALL TRANSITION-PROBABILITIES - FIRST EXIT PROBLEM FROM A GENERAL DOMAIN .1. THE REVERSIBLE CASE [J].
OLIVIERI, E ;
SCOPPOLA, E .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (3-4) :613-647
[17]   Markov chains with exponentially small transition probabilities: First exit problem from a general domain .2. The general case [J].
Olivieri, E ;
Scoppola, E .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (5-6) :987-1041
[18]  
Olivieri E, 2004, LARGE DEVIATIONS MET