Sharp Asymptotics for Stochastic Dynamics with Parallel Updating Rule

被引:20
作者
Nardi, F. R. [2 ,3 ]
Spitoni, C. [1 ]
机构
[1] Leiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, Netherlands
[2] EURANDOM, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
Stochastic dynamics; Probabilistic cellular automata; Metastability; Potential theory; Dirichlet form; Capacity; SMALL TRANSITION-PROBABILITIES; KAWASAKI DYNAMICS; GENERAL DOMAIN; MARKOV-CHAINS; EXIT PROBLEM; METASTABILITY;
D O I
10.1007/s10955-011-0413-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we study the metastability problem for a stochastic dynamics with a parallel updating rule; in particular we consider a finite volume Probabilistic Cellular Automaton (PCA) in a small external field at low temperature regime. We are interested in the nucleation of the system, i.e., the typical excursion from the metastable phase (the configuration with all minuses) to the stable phase (the configuration with all pluses), triggered by the formation of a critical droplet. The main result of the paper is the sharp estimate of the nucleation time: we show that the nucleation time divided by its average converges to an exponential random variable and that the rate of the exponential random variable is an exponential function of the inverse temperature beta times a prefactor that does not scale with beta. Our approach combines geometric and potential theoretic arguments.
引用
收藏
页码:701 / 718
页数:18
相关论文
共 18 条
[1]  
[Anonymous], 2006, International Congress of Mathematicians
[2]   RANDOM-PATHS AND CUTS, ELECTRICAL NETWORKS, AND REVERSIBLE MARKOV-CHAINS [J].
BERMAN, KA ;
KONSOWA, MH .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) :311-319
[3]   Sharp asymptotics for metastability in the random field Curie-Weiss model [J].
Bianchi, Alessandra ;
Bovier, Anton ;
Ioffe, Dmitry .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :1541-1603
[4]   Critical droplets in metastable states of probabilistic cellular automata [J].
Bigelis, S ;
Cirillo, ENM ;
Lebowitz, JL ;
Speer, ER .
PHYSICAL REVIEW E, 1999, 59 (04) :3935-3941
[5]   Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary [J].
Bovier, A ;
den Hollander, F ;
Nardi, FR .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 135 (02) :265-310
[6]   Metastability and low lying spectra in reversible Markov chains [J].
Bovier, A ;
Eckhoff, M ;
Gayrard, V ;
Klein, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (02) :219-255
[7]  
Bovier A., 201108 EURANDOM
[8]   HOMOGENEOUS NUCLEATION FOR GLAUBER AND KAWASAKI DYNAMICS IN LARGE VOLUMES AT LOW TEMPERATURES [J].
Bovier, Anton ;
den Hollander, Frank ;
Spitoni, Cristian .
ANNALS OF PROBABILITY, 2010, 38 (02) :661-713
[9]   METASTABLE BEHAVIOR OF STOCHASTIC DYNAMICS - A PATHWISE APPROACH [J].
CASSANDRO, M ;
GALVES, A ;
OLIVIERI, E ;
VARES, ME .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) :603-634
[10]   Metastability for reversible probabilistic cellular automata with self-interaction [J].
Cirillo, Emilio N. M. ;
Nardi, Francesca R. ;
Spitoni, Cristian .
JOURNAL OF STATISTICAL PHYSICS, 2008, 132 (03) :431-471