Barabasi-Albert random graph with multiple type edges and perturbation

被引:0
|
作者
Backhausz, A. [1 ,2 ]
Rozner, B. [1 ]
机构
[1] Eotvos Lorand Univ, Fac Sci, Dept Probabil Theory & Stat, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[2] Alfred Renyi Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
关键词
random graph; preferential attachment; perturbation; asymptotic; degree distribution;
D O I
10.1007/s10474-019-01005-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the perturbed version of the Barabasi-Albert random graph with multiple type edges and prove the existence of the (generalized) asymptotic degree distribution. Similarly to the non-perturbed case, the asymptotic degree distribution depends on the almost sure limit of the proportion of edges of different types. However, if there is perturbation, then the resulting degree distribution will be deterministic, which is a major difference compared to the non-perturbed case.
引用
收藏
页码:212 / 229
页数:18
相关论文
共 12 条
  • [1] On the number of subgraphs of the Barabasi-Albert random graph
    Ryabchenko, A. A.
    Samosvat, E. A.
    IZVESTIYA MATHEMATICS, 2012, 76 (03) : 607 - 625
  • [2] Barabási–Albert random graph with multiple type edges and perturbation
    Á. Backhausz
    B. Rozner
    Acta Mathematica Hungarica, 2020, 161 : 212 - 229
  • [3] On the number of subgraphs of a random graph in the Barabasi-Albert model
    A. A. Ryabchenko
    E. A. Samosvat
    Doklady Mathematics, 2010, 82 : 946 - 949
  • [4] A generalization of the Barabasi-Albert random tree
    Fazekas, Istvan
    Pecsora, Sandor
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 44 : 71 - 85
  • [5] A surprising property of the Barabasi-Albert random tree
    Mori, Tamas F.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2006, 43 (02) : 265 - 273
  • [6] Structural properties of the scale-free Barabasi-Albert graph
    V. N. Zadorozhnyi
    E. B. Yudin
    Automation and Remote Control, 2012, 73 : 702 - 716
  • [7] Parameter specification for the degree distribution of simulated Barabasi-Albert graphs
    Mohd-Zaid, Fairul
    Kabban, Christine M. Schubert
    Deckro, Richard F.
    White, Edward D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 465 : 141 - 152
  • [8] Geometric Nodal Degree Distributions Arise in Barabasi-Albert Graphs!
    Pal, Siddharth
    Swami, Ananthram
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (03): : 1409 - 1421
  • [9] Network characterization and simulation via mixed properties of the Barabasi-Albert and Erdos-Renyi degree distribution
    Mohd-Zaid, Fairul
    Kabban, Christine Schubert
    Deckro, Richard F.
    Shamp, Wright
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2024, 21 (01): : 87 - 102
  • [10] A test on the L-moments of the degree distribution of a Barabasi-Albert network for detecting nodal and edge degradation
    Mohd-Zaid, Fairul
    Kabban, Christine M. Schubert
    Deckro, Richard F.
    JOURNAL OF COMPLEX NETWORKS, 2018, 6 (01) : 24 - 53