Improved Subspace Estimation for Multivariate Observations of High Dimension: The Deterministic Signals Case
被引:58
作者:
Vallet, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne la Vallee, Lab Informat Gaspard Monge, UMR CNRS 8049, F-77454 Marne La Vallee 2, FranceUniv Paris Est Marne la Vallee, Lab Informat Gaspard Monge, UMR CNRS 8049, F-77454 Marne La Vallee 2, France
Vallet, Pascal
[1
]
Loubaton, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne la Vallee, Lab Informat Gaspard Monge, UMR CNRS 8049, F-77454 Marne La Vallee 2, FranceUniv Paris Est Marne la Vallee, Lab Informat Gaspard Monge, UMR CNRS 8049, F-77454 Marne La Vallee 2, France
Loubaton, Philippe
[1
]
Mestre, Xavier
论文数: 0引用数: 0
h-index: 0
机构:
CTTC, Castelldefels 08860, Barcelona, SpainUniv Paris Est Marne la Vallee, Lab Informat Gaspard Monge, UMR CNRS 8049, F-77454 Marne La Vallee 2, France
Mestre, Xavier
[2
]
机构:
[1] Univ Paris Est Marne la Vallee, Lab Informat Gaspard Monge, UMR CNRS 8049, F-77454 Marne La Vallee 2, France
MUSIC;
random matrix theory;
subspace estimation;
LIMITING SPECTRAL DISTRIBUTION;
EMPIRICAL DISTRIBUTION;
COVARIANCE MATRICES;
DOA ESTIMATION;
EIGENVALUES;
EIGENVECTORS;
CONVERGENCE;
D O I:
10.1109/TIT.2011.2173718
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
We consider the problem of subspace estimation in situations where the number of available snapshots and the observation dimension are comparable in magnitude. In this context, traditional subspace methods tend to fail because the eigen-vectors of the sample correlation matrix are heavily biased with respect to the true ones. It has recently been suggested that this situation (where the sample size is small compared to the observation dimension) can be very accurately modeled by considering the asymptotic regime where the observation dimension and the number of snapshots N converge to +infinity at the same rate. Using large random matrix theory results, it can be shown that traditional subspace estimates are not consistent in this asymptotic regime. Furthermore, new consistent subspace estimate can be proposed, which outperform the standard subspace methods for realistic values of M and N. The work carried out so far in this area has always been based on the assumption that the observations are random, independent and identically distributed in the time domain. The goal of this paper is to propose new consistent subspace estimators for the case where the source signals are modelled as unknown deterministic signals. In practice, this allows to use the proposed approach regardless of the statistical properties of the source signals. In order to construct the proposed estimators, new technical results concerning the almost sure location of the eigenvalues of sample covariance matrices of Information plus Noise complex Gaussian models are established. These results are believed to be of independent interest.
机构:
Univ Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, FranceUniv Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, France
Loubaton, Philippe
;
Vallet, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, FranceUniv Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, France
机构:
Univ Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, FranceUniv Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, France
Loubaton, Philippe
;
Vallet, Pascal
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, FranceUniv Paris Est Marne la Vallee, LIGM CNRS UMR 8049, F-77454 Marne La Vallee, France