Two Distinct Modes of DNA Binding by an MCM Helicase Enable DNA Translocation

被引:2
|
作者
Meagher, Martin [1 ,3 ]
Myasnikov, Alexander [1 ,4 ]
Enemark, Eric J. [1 ,2 ]
机构
[1] St Jude Childrens Res Hosp, Dept Struct Biol, 262 Danny Thomas Pl, Memphis, TN 38105 USA
[2] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, 4301 W Markham St, Little Rock, AR 72205 USA
[3] Tome Biosci, 100 Talcott Ave, Watertown, MA 02472 USA
[4] EPFL VPA DCI Lausanne, BSP 407,Batiment Cubotron,Route Sorge, CH-1015 Lausanne, Switzerland
关键词
ATPase; helicase; DNA replication; CRYO-EM STRUCTURE; SINGLE-STRANDED-DNA; STRUCTURAL BASIS; ATP SYNTHASE; HEXAMERIC HELICASE; CRYSTAL-STRUCTURE; CMG HELICASE; REPLICATION; MECHANISM; COMPLEX;
D O I
10.3390/ijms232314678
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] How directional translocation is regulated in a DNA helicase motor
    Yu, Jin
    Ha, Taekjip
    Schulten, Klaus
    BIOPHYSICAL JOURNAL, 2007, 93 (11) : 3783 - 3797
  • [22] Translocation step size and mechanism of theRecBC DNA helicase
    Bianco, PR
    Kowalczykowski, SC
    NATURE, 2000, 405 (6784) : 368 - 372
  • [23] Translocation step size and mechanism of the RecBC DNA helicase
    Piero R. Bianco
    Stephen C. Kowalczykowski
    Nature, 2000, 405 : 368 - 372
  • [24] Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins
    Samson, Rachel Y.
    Abeyrathne, Priyanka D.
    Bell, Stephen D.
    MOLECULAR CELL, 2016, 61 (02) : 287 - 296
  • [25] Two Distinct DNA Binding Modes Guide Dual Roles of a CRISPR-Cas Protein Complex
    Blosser, Timothy R.
    Loeff, Luuk
    Westra, Edze R.
    Vlot, Marnix
    Kunne, Tim
    Sobota, Malgorzata
    Dekker, Cees
    Brouns, Stan J. J.
    Joo, Chirlmin
    MOLECULAR CELL, 2015, 58 (01) : 60 - 70
  • [26] Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism
    Adam T McGeoch
    Michael A Trakselis
    Ronald A Laskey
    Stephen D Bell
    Nature Structural & Molecular Biology, 2005, 12 : 756 - 762
  • [27] The DNA helicase Mcm2 is required for cardiac looping
    Tena, T. Casar
    Blaette, T.
    Philipp, M.
    CARDIOVASCULAR RESEARCH, 2014, 103
  • [28] Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism
    McGeoch, AT
    Trakselis, MA
    Laskey, RA
    Bell, SD
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (09) : 756 - 762
  • [29] Distinct MutS DNA-binding modes that are differentially modulated by ATP binding and hydrolysis
    Blackwell, LJ
    Bjornson, KP
    Allen, DJ
    Modrich, P
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) : 34339 - 34347
  • [30] Mutations in Subdomain B of the Minichromosome Maintenance (MCM) Helicase Affect DNA Binding and Modulate Conformational Transitions
    Jenkinson, Elizabeth R.
    Costa, Alessandro
    Leech, Andrew P.
    Patwardhan, Ardan
    Onesti, Silvia
    Chong, James P. J.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (09) : 5654 - 5661