DIAGRAM ALGEBRAS, DOMINANCE TRIANGULARITY AND SKEW CELL MODULES

被引:4
作者
Bowman, Christopher [1 ]
Enyang, John [2 ]
Goodman, Frederick [3 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7FS, Kent, England
[2] City Univ London, Dept Math, London, England
[3] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
基金
英国工程与自然科学研究理事会;
关键词
cellular algebras; diagram algebras; REPRESENTATIONS;
D O I
10.1017/S1446788717000179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an abstract framework for the axiomatic study of diagram algebras. Algebras that fit this framework possess analogues of both the Murphy and seminormal bases of the Hecke algebras of the symmetric groups. We show that the transition matrix between these bases is dominance unitriangular. We construct analogues of the skew Specht modules in this setting. This allows us to propose a natural tableaux theoretic framework in which to study the infamous Kronecker problem.
引用
收藏
页码:13 / 36
页数:24
相关论文
共 50 条
[21]   DOMINANCE ORDER AND MONOIDAL CATEGORIFICATION OF CLUSTER ALGEBRAS [J].
Casbi, Elie .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 305 (02) :473-537
[22]   A Reciprocity Result for Projective Indecomposable Modules of Cellular Algebras and BGG Algebras [J].
Bowman, C. ;
Martin, S. .
JOURNAL OF LIE THEORY, 2012, 22 (04) :1065-1073
[23]   Combinatorial Gelfand Models for Semisimple Diagram Algebras [J].
Mazorchuk, Volodymyr .
MILAN JOURNAL OF MATHEMATICS, 2013, 81 (02) :385-396
[24]   Faithfulness of generalised Verma modules for Iwasawa algebras [J].
Mann, Stephen .
JOURNAL OF ALGEBRA, 2023, 614 :417-457
[25]   MODULES FOR A SHEAF OF LIE ALGEBRAS ON LOOP MANIFOLDS [J].
Billig, Yuly .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (08)
[26]   Supports of weight modules over Witt algebras [J].
Mazorchuk, Volodymyr ;
Zhao, Kaiming .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :155-170
[27]   IRREDUCIBLE WEIGHT MODULES OVER WITT ALGEBRAS [J].
Guo, Xiangqian ;
Zhao, Kaiming .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (07) :2367-2373
[28]   On the simplicity of induced modules for reductive Lie algebras [J].
Zhang, Chaowen .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) :357-371
[29]   Indecomposable modules of a family of solvable Lie algebras [J].
Casati, Paolo ;
Previtali, Andrea ;
Szechtman, Fernando .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 :423-446
[30]   Tilting modules over tame hereditary algebras [J].
Huegel, Lidia Angeleri ;
Sanchez, Javier .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 682 :1-48