The discontinuous Galerkin method for fractional degenerate convection-diffusion equations

被引:21
作者
Cifani, Simone [1 ]
Jakobsen, Espen R. [1 ]
Karlsen, Kenneth H. [2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Math, N-7491 Trondheim, Norway
[2] Univ Oslo, Dept Math, Ctr Math Applicat CMA, N-0316 Oslo, Norway
关键词
Convection-diffusion equations; Degenerate parabolic; Conservation laws; Fractional diffusion; Entropy solutions; Direct/local discontinuous Galerkin methods; APPROXIMATION;
D O I
10.1007/s10543-011-0327-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (L,vy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through numerical experiments.
引用
收藏
页码:809 / 844
页数:36
相关论文
共 30 条
[1]   An analytic approach to purely nonlocal Bellman equations arising in models of stochastic control [J].
Abels, H. ;
Kassmann, M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (01) :29-56
[2]   Occurrence and non-appearance of shocks in fractal Burgers equations [J].
Alibaud, Nathael ;
Droniou, Jerome .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (03) :479-499
[3]   Entropy formulation for fractal conservation laws [J].
Alibaud, Nathael .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (01) :145-175
[4]  
[Anonymous], NE MATH J
[5]   L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations [J].
Chen, GQ ;
Karlsen, KH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :937-963
[6]   The discontinuous Galerkin method for fractal conservation laws [J].
Cifani, Simone ;
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) :1090-1122
[7]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[8]  
Cockburn B., 1998, LECT NOTES MATH, V1697
[9]   SOME RELATIONS BETWEEN NONEXPANSIVE AND ORDER PRESERVING MAPPINGS [J].
CRANDALL, MG ;
TARTAR, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (03) :385-390
[10]   Numerical approximation of entropy solutions for hyperbolic integro-differential equations [J].
Dedner, A ;
Rohde, C .
NUMERISCHE MATHEMATIK, 2004, 97 (03) :441-471