Universal central extensions of sl(m, n, A) over associative superalgebras

被引:1
作者
Garcia-Martinez, Xabier [1 ]
Ladra, Manuel [1 ]
机构
[1] Univ Santiago de Compostela, Dept Algebra, Santiago De Compostela, Spain
关键词
Lie superalgebras; Steinberg superalgebras; universal central extensions; ABELIAN TENSOR PRODUCT; LIE-SUPERALGEBRAS; ALGEBRAS; HOMOLOGY;
D O I
10.3906/mat-1604-34
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the universal central extension of the matrix superalgebras sl(m, n, A), where A is an associative superalgebra and m+n = 3, 4, and its relation with the Steinberg superalgebra sl(m, n, A). We calculate H-2 (sl(m, n, A)) and H-2 (sl(m, n, A)). Finally, we introduce a new method using the nonabelian ensor product of Lie superalgebras to find the connection between H-2 (sl(m, n, A)) and the cyclic homology of associative superalgebras for m + n >= 3.
引用
收藏
页码:1552 / 1569
页数:18
相关论文
共 15 条
[1]   Dennis supertrace and the Hochschild homology of supermatrices [J].
Blaga, P. A. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (03) :384-390
[2]  
Bloch S., 1980, LECT NOTES MATH, V854, P1
[3]  
Chen HJ, 2013, ALGEBR REPRESENT TH, V16, P591, DOI 10.1007/s10468-011-9320-4
[4]   A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS [J].
ELLIS, GJ .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :101-120
[5]   Steinberg unitary Lie algebras and skew-dihedral homology [J].
Gao, Y .
JOURNAL OF ALGEBRA, 1996, 179 (01) :261-304
[6]   Universal coverings of Steinberg Lie algebras of small characteristic [J].
Gao, Yun ;
Shang, Shikui .
JOURNAL OF ALGEBRA, 2007, 311 (01) :216-230
[7]   Non-abelian tensor product and homology of Lie superalgebras [J].
Garcia-Martinez, Xabier ;
Khraaladze, Emzar ;
Ladra, Manuel .
JOURNAL OF ALGEBRA, 2015, 440 :464-488
[8]  
Garland H., 1980, Inst. Hautes Etudes Sci. Publ. Math., P5, DOI 10.1007/BF02684779
[9]   Second homology of Lie superalgebras [J].
Iohara, K ;
Koga, Y .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (09) :1041-1053
[10]   A KUNNETH FORMULA FOR THE CYCLIC COHOMOLOGY OF Z/2-GRADED ALGEBRAS [J].
KASSEL, C .
MATHEMATISCHE ANNALEN, 1986, 275 (04) :683-699