Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration

被引:15
作者
Di, Huafei [1 ,2 ]
Shang, Yadong [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
Pseudo-parabolic equation; Nonlocal source; Conical degeneration; Blow-up and Decay; Potential well; Variational method; TIME BLOW-UP; THIN-FILM EQUATION; P-LAPLACE EQUATION; HYPERBOLIC-EQUATIONS; NON-EXTINCTION; INITIAL DATA; EXISTENCE; INSTABILITY;
D O I
10.1016/j.jde.2020.03.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a class of nonlocal semilinear pseudo-parabolic equation with conical degeneration u(t) - Delta(B)u(t) - Delta(B)u = vertical bar u vertical bar(p-1) u-1/vertical bar B vertical bar integral(B) vertical bar u vertical bar(p-1)udx(1)/x(1)dx', on a manifold with conical singularity, where Delta(B) is Fuchsian type Laplace operator with totally characteristic degeneracy on the boundary x(1)= 0. By using the modified method of potential well with Galerkin approximation and concavity, the global existence, uniqueness, finite time blow up and asymptotic behavior of the solutions will be discussed at the low initial energy J(u(0)) < dand critical initial energy J(u(0)) = d, respectively. Furthermore, we investigate the global existence and finite time blow up of the solutions with the high initial energy J(u(0)) > d by the variational method. Especially, we also derive the threshold results of global existence and nonexistence for the solutions at two different initial energy levels, i.e. low initial leveland critical initial level. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:4566 / 4597
页数:32
相关论文
共 35 条
  • [21] Global existence, exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration
    Li, Gang
    Yu, Jiangyong
    Liu, Wenjun
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2017, 8 (04) : 629 - 660
  • [22] Global existence blow up and extinction for a class of thin-film equation
    Li, Qingwei
    Gao, Wenjie
    Han, Yuzhu
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 96 - 109
  • [23] A note on blow-up of solution for a class of semilinear pseudo-parabolic equations
    Liu, Wenjun
    Yu, Jiangyong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (05) : 1276 - 1283
  • [24] Asymptotic behaviour of solutions to some pseudoparabolic equations
    Liu, Yan
    Jiang, Weisheng
    Huang, Falun
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (02) : 111 - 114
  • [25] SADDLE POINTS AND INSTABILITY OF NONLINEAR HYPERBOLIC EQUATIONS
    PAYNE, LE
    SATTINGER, DH
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (3-4) : 273 - 303
  • [26] Homogenization of a pseudoparabolic system
    Peszynska, Malgorzata
    Showalter, Ralph
    Yi, Son-Young
    [J]. APPLICABLE ANALYSIS, 2009, 88 (09) : 1265 - 1282
  • [27] Blow-up and extinction for a thin-film equation with initial-boundary value conditions
    Qu, Chengyuan
    Zhou, Wenshu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 796 - 809
  • [28] Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions
    Qu, Chengyuan
    Bai, Xueli
    Zheng, Sining
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 326 - 333
  • [29] Showalter R.E., 1972, SIAM J MATH ANAL, V3, P527, DOI [10.1137/0503051, DOI 10.1137/0503051]
  • [30] COMPACT-SETS IN THE SPACE LP(O, T-B)
    SIMON, J
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 146 : 65 - 96