A New Parallel Hierarchical K-Means Clustering Algorithm for Video Retrieval

被引:1
|
作者
Liao, Kaiyang [1 ]
Tang, Ziwei [1 ]
Cao, Congjun [1 ]
Zhao, Fan [1 ]
Zheng, Yuanlin [1 ]
机构
[1] Xian Univ Technol, Fac Printing Packaging Engn & Digital Media Techn, Xian, Shaanxi, Peoples R China
来源
ADVANCED GRAPHIC COMMUNICATIONS AND MEDIA TECHNOLOGIES | 2017年 / 417卷
基金
中国国家自然科学基金;
关键词
Video retrieval; Clustering algorithm; Data mining; Parallel algorithm;
D O I
10.1007/978-981-10-3530-2_23
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The K-means clustering algorithm has been widely adopted to build vocabulary in image retrieval. But, the speed and accuracy of K-means still need to be improved. In the manuscript, we propose a New Parallel Hierarchical K-means Clustering (PHKM) Algorithm for Video Retrieval. The PHKM algorithm improves on the K-means as the following ways. First, the Hellinger kernel is used to replace the Euclidean kernel, which improves the accuracy. Second, the multi-core processors based parallel clustering algorithm is proposed. The experiment results show that the proposed PHKM algorithm is very faster and effective than K-means.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 50 条
  • [1] Parallel N-Path Quantification Hierarchical K-Means Clustering Algorithm for Video Retrieval
    Liao, Kaiyang
    Zhao, Fan
    Zheng, Yuanlin
    Cao, Congjun
    Zhang, Mingzhu
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2017, 31 (09)
  • [2] An effective and efficient hierarchical K-means clustering algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    Wang, Yingjie
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (08) : 1 - 17
  • [3] The new k-windows algorithm for improving the k-means clustering algorithm
    Vrahatis, MN
    Boutsinas, B
    Alevizos, P
    Pavlides, G
    JOURNAL OF COMPLEXITY, 2002, 18 (01) : 375 - 391
  • [4] Comparative Study of Two Parallel Algorithm K-Means and DBSCAN Clustering on Spark Platform
    Bouhout, Safae
    Oubenaalla, Youness
    Nfaoui, El Habib
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 245 - 262
  • [5] The global k-means clustering algorithm
    Likas, A
    Vlassis, N
    Verbeek, JJ
    PATTERN RECOGNITION, 2003, 36 (02) : 451 - 461
  • [6] Improved K-means clustering algorithm
    Zhang, Zhe
    Zhang, Junxi
    Xue, Huifeng
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 5, PROCEEDINGS, 2008, : 169 - 172
  • [7] K*-Means: An Effective and Efficient K-means Clustering Algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 242 - 249
  • [8] Parallel K-Means Clustering Based on MapReduce
    Zhao, Weizhong
    Ma, Huifang
    He, Qing
    CLOUD COMPUTING, PROCEEDINGS, 2009, 5931 : 674 - 679
  • [9] A modified K-means algorithm for categorical data clustering
    Sun, Y
    Zhu, QM
    Chen, ZX
    IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 31 - 37
  • [10] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893