Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells

被引:406
作者
Chen, Wei [1 ]
Xu, Tao [2 ,3 ]
He, Feng [2 ,3 ]
Wang, Wei [2 ,3 ]
Wang, Cheng [4 ]
Strzalka, Joseph [5 ]
Liu, Yun [6 ,7 ]
Wen, Jianguo [8 ,9 ]
Miller, Dean J. [8 ,9 ]
Chen, Jihua [10 ]
Hong, Kunlun [10 ]
Yu, Luping [2 ,3 ]
Darling, Seth B. [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[2] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA
[6] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[7] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
[8] Argonne Natl Lab, Ctr Electron Microscopy, Lemont, IL 60439 USA
[9] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA
[10] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
Organic photovoltaics; bulk heterojunction; hierarchical nanomorphology; charge photogeneration; X-ray scattering; device performance; POWER CONVERSION EFFICIENCY; PHASE-SEPARATION; THIN-FILMS; POLYMER; REFLECTIVITY; MORPHOLOGY; PERFORMANCE; DYNAMICS; PCBM;
D O I
10.1021/nl201715q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
PTB7 semiconducting copolymer comprising thieno[3,4-b]thiophene and benzodithiophene alternating repeat units set a historic record of solar energy conversion efficiency (7.4%) in polymer/fullerene bulk heterojunction solar cells. To further improve solar cell performance, a thorough understanding of structure-property relationships associated with PTB7/fullerene and related organic photovoltaic (OPV) devices is crucial. Traditionally, OPV active layers are viewed as an interpenetrating network of pure polymers and fullerenes with discrete interfaces. Here we show that the active layer of PTB7/fullerene OPV devices in fact involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, indicating that the nanostructural characteristics at multiple length scales is one of the key factors determining the performance of PTB7 copolymer, and likely most polymer/fullerene systems, in OPV devices.
引用
收藏
页码:3707 / 3713
页数:7
相关论文
共 50 条
  • [41] Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology
    Cardinaletti, Ilaria
    Kesters, Jurgen
    Bertho, Sabine
    Conings, Bert
    Piersimoni, Fortunato
    D'Haen, Jan
    Lutsen, Laurence
    Nesladek, Milos
    Van Mele, Bruno
    Van Assche, Guy
    Vandewal, Koen
    Salleo, Alberto
    Vanderzande, Dirk
    Maes, Wouter
    Manca, Jean V.
    JOURNAL OF PHOTONICS FOR ENERGY, 2014, 4
  • [42] Performance Analysis of Bulk Heterojunction Solar Cells Fabricated by Polymer:Fullerene:Carbon-Nanotube Composites
    Liu, Liming
    Stanchina, William E.
    Li, Guangyong
    2009 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE, 2009, : 207 - 211
  • [43] Aggregation Controlled Charge Generation in Fullerene Based Bulk Heterojunction Polymer Solar Cells: Effect of Additive
    Ware, Washat
    Wright, Tia
    Mao, Yimin
    Han, Shubo
    Guffie, Jessa
    Danilov, Evgeny O.
    Rech, Jeromy
    You, Wei
    Luo, Zhiping
    Gautam, Bhoj
    POLYMERS, 2021, 13 (01) : 1 - 11
  • [44] Thickness Effect of Bulk Heterojunction Layers on the Performance and Stability of Polymer:Fullerene Solar Cells with Alkylthiothiophene-Containing Polymer
    Nam, Sungho
    Song, Myeonghun
    Kim, Hwajeong
    Bradley, Donal D. C.
    Kim, Youngkyoo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (10): : 9263 - 9270
  • [45] Temperature/time-dependent crystallization of polythiophene:fullerene bulk heterojunction films for polymer solar cells
    Nam, Sungho
    Shin, Minjung
    Kim, Hwajeong
    Kim, Youngkyoo
    NANOSCALE, 2010, 2 (11) : 2384 - 2389
  • [46] Controlling the Electronic Interface Properties in Polymer-Fullerene Bulk Heterojunction Solar Cells
    Stubhan, T.
    Wolf, N.
    Manara, J.
    Dyakonov, V.
    Brabec, C. J.
    ELEMENTARY PROCESSES IN ORGANIC PHOTOVOLTAICS, 2017, 272 : 293 - 310
  • [47] Modeling and simulation of bulk heterojunction polymer solar cells
    Liang, Chunjun
    Wang, Yongsheng
    Li, Dan
    Ji, Xingchen
    Zhang, Fujun
    He, Zhiqun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 127 : 67 - 86
  • [48] Roles of Interfacial Modifiers in Hybrid Solar Cells: Inorganic/Polymer Bilayer vs Inorganic/Polymer:Fullerene Bulk Heterojunction
    Eom, Seung Hun
    Baek, Myung-Jin
    Park, Hanok
    Yan, Liang
    Liu, Shubin
    You, Wei
    Lee, Soo-Hyoung
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (02) : 803 - 810
  • [49] Molecular Doping Enhances Photoconductivity in Polymer Bulk Heterojunction Solar Cells
    Zhang, Yuan
    Zhou, Huiqiong
    Seifter, Jason
    Ying, Lei
    Mikhailovsky, Alexander
    Heeger, Alan J.
    Bazan, Guillermo C.
    Nguyen, Thuc-Quyen
    ADVANCED MATERIALS, 2013, 25 (48) : 7038 - 7044
  • [50] Morphology Characterization of Bulk Heterojunction Solar Cells
    Song, Jingnan
    Zhang, Ming
    Yuan, Meng
    Qian, Yuhao
    Sun, Yanming
    Liu, Feng
    SMALL METHODS, 2018, 2 (03):