Search for Torsion in Khovanov Homology

被引:10
作者
Mukherjee, Sujoy [1 ]
Przytycki, Jozef H. [1 ,2 ]
Silvero, Marithania [3 ]
Wang, Xiao [1 ]
Yang, Seung Yeop [1 ]
机构
[1] George Washington Univ, Dept Math, Phillips Hall,Room 739,80122nd St NW, Washington, DC 20052 USA
[2] Univ Gdansk, Dept Math, Gdansk, Poland
[3] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
braids; Khovanov homology; odd Khovanov homology; reduced Khovanov homology; smoothing number one; torsion; torus links; COHOMOLOGY; PATTERNS;
D O I
10.1080/10586458.2017.1320242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the Khovanov homology of links, presence of -torsion is a very common phenomenon. Finite number of examples of knots with -torsion for n > 2 were also known, none for n > 8. In this article, we present several infinite families of links whose Khovanov homology contains -torsion for 2 < n < 9 and -torsion for s < 24. We introduce 4-braid links with -torsion which are counterexamples to parts of the PS braid conjecture. We also provide an infinite family of knots with -torsion in reduced Khovanov homology and -torsion in odd Khovanov homology.
引用
收藏
页码:488 / 497
页数:10
相关论文
共 34 条
[11]   A categorification of the Jones polynomial [J].
Khovanov, M .
DUKE MATHEMATICAL JOURNAL, 2000, 101 (03) :359-426
[12]  
Lewark L., 2014, COMMUNICATION
[13]   ON THE BRAID INDEX OF ALTERNATING LINKS [J].
MURASUGI, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 326 (01) :237-260
[14]   Odd Khovanov homology [J].
Ozsvath, Peter S. ;
Rasmussen, Jacob ;
Szabo, Zoltan .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (03) :1465-1488
[15]   On the first group of the chromatic cohomology of graphs [J].
Pabiniak, Milena D. ;
Przytycki, Jozef H. ;
Sazdanovic, Radmila .
GEOMETRIAE DEDICATA, 2009, 140 (01) :19-48
[16]  
Przytycki J. H., 2004, NEW TECHNIQUES TOPOL
[17]  
PRZYTYCKI J. H., 1988, Contemp. Math., 78. Amer. Math. Soc., P615, DOI DOI 10.1090/CONM/078/975099.774,776,778
[18]   Torsion in Khovanov homology of semi-adequate links [J].
Przytycki, Jozef H. ;
Sazdanovic, Radmila .
FUNDAMENTA MATHEMATICAE, 2014, 225 :277-303
[19]   When the theories meet: Khovanov homology as Hochschild homology of links [J].
Przytycki, Jozef H. .
QUANTUM TOPOLOGY, 2010, 1 (02) :93-109
[20]  
Rasmussen J, 2005, FIELDS I COMMUN, V47, P261