Enhanced electrokinetic remediation (EKR) for heavy metal-contaminated sediments focusing on treatment of generated effluents from EKR and recovery of EDTA

被引:17
作者
Ayyanar, Arulpoomalai [1 ]
Thatikonda, Shashidhar [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Civil Engn, Sangareddy, Telangana, India
关键词
EDTA recovery; electrokinetic; heavy metals; precipitation; remediation; sediments; ORGANIC CONTAMINANTS; SEWAGE-SLUDGE; CITRIC-ACID; SOIL; REMOVAL; PB; CD; EXTRACTION; MARINE; LEAD;
D O I
10.1002/wer.1369
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electrokinetic remediation (EKR) is one of the most successful remediation techniques to treat the sediments contaminated with heavy metals. EDTA is the most widely used enhancing agent to improve the transport process in EKR. But often the generated effluents from EKR contains a high concentration of heavy metals, which cannot be disposed of without treatment. The major objective of this study includes the estimation of optimal concentration of chelating agent EDTA, followed by treatment of contaminated sediments by EKR technique for heavy metal removal. The effluents generated from EKR were further studied for recovery and reuse of EDTA and for safe discharge of heavy metals. The optimum concentration of EDTA was found as 0.05 M with a solid-to-liquid ratio as 1:10. When fresh EDTA was used as enhancing agent the average removal of heavy metals obtained as 74.8% with EKR, whereas the application of recovered EDTA in treatment process in first, second, and third cycle showed the slight reduction of heavy metals of about 71.1%, 63.5%, and 52.1%, respectively. The heavy metal removal by recovered EDTA was effective in reduction of heavy metals up to three cycles of re-use while reducing the ecological risk in sediments. Practitioner points Treatment of contaminated sediments with heavy metals achieved by electrokinetic remediation (EKR) technique enhanced with EDTA. The recovery of EDTA and heavy metal reduction from the generated effluents during EKR treatment were performed by the addition of FeCl(3)and Na(2)PO(4,)and optimized concentration was evaluated. This study found that the use of recovered EDTA in EKR treatment has effectively reduced the risk associated with heavy metals.
引用
收藏
页码:136 / 147
页数:12
相关论文
共 61 条
[1]   Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon [J].
Ahn, C. K. ;
Kim, Y. M. ;
Woo, S. H. ;
Park, J. M. .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 154 (1-3) :153-160
[2]   THE EFFECT OF VALENCE AND IONIC-STRENGTH ON THE MEASUREMENT OF PH BUFFER CAPACITY [J].
AITKEN, RL ;
MOODY, PW .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 1994, 32 (05) :975-984
[3]   REMEDIATION OF METAL-CONTAMINATED SOIL BY EDTA INCORPORATING ELECTROCHEMICAL RECOVERY OF METAL AND EDTA [J].
ALLEN, HE ;
CHEN, PH .
ENVIRONMENTAL PROGRESS, 1993, 12 (04) :284-293
[4]   Use of cation-exchange membranes for simultaneous recovery of lead and EDTA during electrokinetic extraction [J].
Amrate, S ;
Akretche, DE ;
Innocent, C ;
Seta, P .
DESALINATION, 2006, 193 (1-3) :405-410
[5]   Removal of Pb from a calcareous soil during EDTA-enhanced electrokinetic extraction [J].
Amrate, S ;
Akretche, DE ;
Innocent, C ;
Seta, P .
SCIENCE OF THE TOTAL ENVIRONMENT, 2005, 349 (1-3) :56-66
[6]   "Green technology": Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil [J].
Annamalai, Sivasankar ;
Santhanam, Manikandan ;
Selvaraj, Subbulakshmi ;
Sundaram, Maruthamuthu ;
Pandian, Kannan ;
Pazos, Marta .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 624 :1649-1657
[7]  
[Anonymous], EPA9045C US EPA
[8]   Distribution and ecological risks of heavy metals in Lake Hussain Sagar, India [J].
Ayyanar, Arulpoomalai ;
Thatikonda, Shashidhar .
ACTA GEOCHIMICA, 2020, 39 (02) :255-270
[9]   Electrokinetic remediation for the removal of organic contaminants in soils [J].
Cameselle, Claudio ;
Gouveia, Susana .
CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 11 :41-47
[10]   Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals [J].
Cameselle, Claudio ;
Pena, Alberto .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2016, 104 :209-217