Remarks on regularity criteria for axially symmetric weak solutions to the Navier-Stokes equations

被引:31
作者
Kubica, Adam [2 ,3 ]
Pokorny, Milan [1 ]
Zajaczkowski, Wojciech [3 ,4 ]
机构
[1] Charles Univ Prague, Math Inst, Prague 18675 8, Czech Republic
[2] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
[3] Mil Univ Technol, Inst Math & Cryptol, PL-00908 Warsaw, Poland
[4] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
关键词
Navier-Stokes equations; axial symmetry; regularity criteria; weighted spaces; INTERIOR REGULARITY;
D O I
10.1002/mma.1586
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the conditional regularity of the solutions to the NavierStokes equations in the entire three-dimensional space under the assumption that the data are axially symmetric. We show that if a radial or angular component of velocity satisfies a weighted Serrin condition, then the solution is regular. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:360 / 371
页数:12
相关论文
共 25 条
[1]  
[Anonymous], 2004, Applications of Mathematics
[2]  
[Anonymous], 1999, Electron. J. Differential Equations
[3]  
[Anonymous], 2002, Methods Appl. Anal.
[4]  
[Anonymous], 2002, Topics in Mathematical Fluid Mechanics
[5]   Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations [J].
Berselli, LC ;
Galdi, GP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3585-3595
[6]   Regularity Criteria for the Three-dimensional Navier-Stokes Equations [J].
Cao, Chongsheng ;
Titi, Edriss S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2643-2661
[7]   On the regularity of the axisymmetric solutions of the Navier-Stokes equations [J].
Chae, D ;
Lee, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) :645-671
[8]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[9]   Backward uniqueness for parabolic equations [J].
Escauriaza, L ;
Seregin, G ;
Sverak, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (02) :147-157
[10]  
Kreml O., 2007, Electronic Journal of Differential Equations, V8, P1