Exact Solutions for Solitary Waves in a Bose-Einstein Condensate under the Action of a Four-Color Optical Lattice

被引:12
作者
Halder, Barun [1 ]
Ghosh, Suranjana [2 ]
Basu, Pradosh [1 ]
Bera, Jayanta [1 ]
Malomed, Boris [3 ,4 ]
Roy, Utpal [1 ]
机构
[1] Indian Inst Technol Patna, Dept Phys, Patna 801103, Bihar, India
[2] Indian Inst Sci Educ & Res Kolkata, Dept Phys, Kolkata 741246, India
[3] Tel Aviv Univ, Sch Elect Engn, Ctr Light Matter Interact, Dept Phys Elect,Fac Engn, POB 39040, Tel Aviv, Israel
[4] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica 1000000, Chile
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 01期
基金
以色列科学基金会;
关键词
four-color optical lattice; Bose-Einstein condensate; soliton; ULTRACOLD ATOMS; MATTER WAVES; DYNAMICS;
D O I
10.3390/sym14010049
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address dynamics of Bose-Einstein condensates (BECs) loaded into a one-dimensional four-color optical lattice (FOL) potential with commensurate wavelengths and tunable intensities. This configuration lends system-specific symmetry properties. The analysis identifies specific multi-parameter forms of the FOL potential which admits exact solitary-wave solutions. This newly found class of potentials includes more particular species, such as frustrated double-well superlattices, and bichromatic and three-color lattices, which are subject to respective symmetry constraints. Our exact solutions provide options for controllable positioning of density maxima of the localized patterns, and tunable Anderson-like localization in the frustrated potential. A numerical analysis is performed to establish dynamical stability and structural stability of the obtained solutions, which makes them relevant for experimental realization. The newly found solutions offer applications to the design of schemes for quantum simulations and processing quantum information.
引用
收藏
页数:9
相关论文
共 46 条
[1]  
Abramowitz M., 1964, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V55, DOI DOI 10.1119/1.15378
[2]   Localization of a Bose-Einstein condensate in a bichromatic optical lattice [J].
Adhikari, S. K. ;
Salasnich, L. .
PHYSICAL REVIEW A, 2009, 80 (02)
[3]   Matter-wave fractional revivals in a ring waveguide [J].
Bera, Jayanta ;
Ghosh, Suranjana ;
Salasnich, Luca ;
Roy, Utpal .
PHYSICAL REVIEW A, 2020, 102 (06)
[4]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[5]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[6]   Negative Absolute Temperature for Motional Degrees of Freedom [J].
Braun, S. ;
Ronzheimer, J. P. ;
Schreiber, M. ;
Hodgman, S. S. ;
Rom, T. ;
Bloch, I. ;
Schneider, U. .
SCIENCE, 2013, 339 (6115) :52-55
[7]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[8]   Scalable register initialization for quantum computing in an optical lattice [J].
Brennen, GK ;
Pupillo, G ;
Rey, AM ;
Clark, CW ;
Williams, CJ .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (11) :1687-1694
[9]   Dynamics of two coupled Bose-Einstein condensate solitons in an optical lattice [J].
Cheng, YS ;
Gong, RZ ;
Li, H .
OPTICS EXPRESS, 2006, 14 (08) :3594-3601
[10]   Quantum superposition states of Bose-Einstein condensates [J].
Cirac, JI ;
Lewenstein, M ;
Molmer, K ;
Zoller, P .
PHYSICAL REVIEW A, 1998, 57 (02) :1208-1218