DENSITY OF POSITIVE LYAPUNOV EXPONENTS FOR SL(2, R)-COCYCLES

被引:29
|
作者
Avila, Artur [1 ,2 ]
机构
[1] CNRS, UMR 7586, Inst Math Jussieu, F-75013 Paris, France
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
GENERICITY; SPECTRUM;
D O I
10.1090/S0894-0347-2011-00702-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:999 / 1014
页数:16
相关论文
共 50 条
  • [41] LYAPUNOV EXPONENTS OF COCYCLES OVER NON-UNIFORMLY HYPERBOLIC SYSTEMS
    Kalinin, Boris
    Sadovskaya, Victoria
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 5105 - 5118
  • [42] Lyapunov exponents of continuous Schrödinger cocycles over irrational rotations
    Kristian Bjerklöv
    David Damanik
    Russell Johnson
    Annali di Matematica Pura ed Applicata, 2008, 187 : 1 - 6
  • [43] Holder continuity of the Lyapunov exponents of linear cocycles over hyperbolic maps
    Duarte, Pedro
    Klein, Silvius
    Poletti, Mauricio
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2285 - 2325
  • [44] Continuity, positivity and simplicity of the Lyapunov exponents for quasi-periodic cocycles
    Duarte, Pedro
    Klein, Silvius
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (07) : 2051 - 2106
  • [45] Analyticity of the Lyapunov exponents of random products of quasi-periodic cocycles
    Bezerra, Jamerson
    Sanchez, Adriana
    Tall, El Hadji Yaya
    NONLINEARITY, 2023, 36 (06) : 3467 - 3482
  • [46] Uniform positivity and continuity of Lyapunov exponents for a class of C2 quasiperiodic Schrodinger cocycles
    Wang, Yiqian
    Zhang, Zhenghe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (09) : 2525 - 2585
  • [47] Almost reducibility of quasiperiodic SL(2, R)-cocycles in ultradifferentiable classes
    Chatal, Maxime
    Chavaudret, Claire
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 356 : 243 - 288
  • [48] Uniformly hyperbolic finite-valued SL(2, R)-cocycles
    Avila, Artur
    Bochi, Jairo
    Yoccoz, Jean-Christophe
    COMMENTARII MATHEMATICI HELVETICI, 2010, 85 (04) : 813 - 884
  • [49] On SL(2,R)-Cocycles over Irrational Rotations with Secondary Collisions
    Ivanov, Alexey V.
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (02): : 207 - 226
  • [50] Clustering and synchronization with positive Lyapunov exponents
    Grupo de Fis. Matemática, Complexo Interdisciplinar, Universidade de Lisboa, Av. Gama Pinto, 2, P1699 Lisboa Codex, Portugal
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (132-138):